自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 深度学习环境配置:Ubuntu20.04离线安装Docker、Docker Compose和nvidia-docker2

通过上述步骤,我们成功在 Ubuntu 20.04 系统上离线安装了 Docker、Docker Compose 和 NVIDIA Docker2。这些工具的组合将极大地提升我们在离线环境中的开发和部署效率,特别是在需要 GPU 加速的应用场景中。希望本文能对您有所帮助。

2025-01-08 16:53:54 1528

原创 随机森林+不平衡处理+遗传算法优化

随机森林+不平衡处理+遗传算法优化

2022-11-16 14:37:06 6774 11

原创 商业数据分析模型及其核心Python代码_持续更新

商业数据分析模型及其Python核心代码

2022-10-20 15:50:00 1602 2

原创 Pandas数据预处理_持续更新

Pandas数据预处理_持续更新

2022-10-02 20:49:27 709

原创 全国24小时降水量pyecharts可视化分析

爬虫抓取天气预报网站的降水量数据,并利用pyecharts库进行可视化生成动态的热力图。

2022-09-26 16:39:48 1692

随机森林+不平衡处理+遗传算法优化

内容摘要: 在该资源文件夹当中包括了数据预处理和特征工程后的数据(数据来源于第五届泰迪杯技能赛,数据经过作者预处理和特征工程),以及一步导出随机森林训练结果的模型评估函数,模型的特征重要性图像、模型评估的混淆矩阵。同时资源中还有数据不平衡得处理操作,实现方式为下采样。在资源当中还实现了,利用遗传算法(GA)对随机森林进行n_estimators、max_depth、min_samples_split、min_samples_leaf、max_features的参数优化。 资源结构: -BinaryClassification(GA) --data:数据 --image:导出图片 --model:模型参数 --Binary_RF(GA).py:遗传算法优化 --BinaryRF.py:常规随机森林分类 适合人群: 该资源适合用来竞赛和写论文,可以快速导出结果,大大节省时间。 使用建议: 二分类数据预处理和特征工程处理好后,导入数据分配好特征和标签,然后运行就可以导出模型的训练权重和模型的特征重要性图像、模型评估的混淆矩阵图像。遗传算法调参属于进阶内容,不懂得可以私信作者。

2022-11-16

随机森林回归,包含可视化和预测

随机森林回归,包含可视化和预测

2022-11-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除