Python之Pandas

这篇博客介绍了在Python中使用pandas进行数据分析的基本操作,包括在jupyter Notebook环境下引入pandas和numpy库,读取文件,使用index、max、min、ptp函数以及sorted函数进行数据处理,特别强调了describe函数在计算统计指标中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python之pandas

环境:jupyter Notebook(Anaconda)

1.引入pandas库和numpy库
import pandas as pd  
import numpy as np
2. 读取文件

t1=pd.read_excel('D:\scores.xlsx',header=[0,1],index_col=0) #读取文件
t1
#index_col 接收int、sequence或者False。表示设定的列作为行名,如果是一个数列,则是多重索引,默认为None

在这里插入图片描述

3. index函数

index 接收boolean。表示是否将行索引作为数据传入数据库。默认为True
index_label 接收string或者sequence.代表是否引用索引名称,如果index参数为true,此参数为None,则使用默认名称。如果为多重索引,则必须使用sequence形式。默认为None

sorted_obj=t1.sort_index(ascending=True)
sorted_obj

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值