transformer模型构建

本文深入探讨了Transformer模型的构建过程,包括编码器-解码器结构的实现。首先介绍了EncoderDecoder类,它包含编码器、解码器、源数据和目标数据的嵌入以及生成器。编码器由多头注意力和前馈全连接网络组成,解码器则包含自注意力、源注意力和前馈全连接网络。编码器-解码器结构在机器翻译等任务中起着关键作用。接着,展示了`make_model`函数,用于构建完整的Transformer模型,包括多头注意力、前馈全连接网络、位置编码等组件,并使用Xavier初始化权重。该函数返回一个预训练模型,可用于后续的训练和推理任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.6 模型构建


学习目标

  • 掌握编码器-解码器结构的实现过程.
  • 掌握Transformer模型的构建过程.

  • 通过上面的小节, 我们已经完成了所有组成部分的实现, 接下来就来实现完整的编码器-解码器结构.

  • Transformer总体架构图:


编码器-解码器结构的代码实现

# 使用EncoderDecoder类来实现编码器-解码器结构
class EncoderDecoder(nn.Module):
    def __init__(self, encoder, decoder, source_embed, target_embed, generator):
        """初始化函数中有5个参数, 分别是编码器对象, 解码器对象, 
           源数据嵌入函数, 目标数据嵌入函数,  以及输出部分的类别生成器对象
        """
        super(EncoderDecoder, self).__init__()
        # 将参数传入到类中
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = source_embed
        self.tgt_embed = target_embed
        self.generator = generator

    def forward(self, source, target, source_mask, target_mask):
        """在forward函数中,有四个参数, source代表源数据, target代表目标数据, 
           source_mask和target_mask代表对应的掩码张量"""

        # 在函数中, 将source, source_mask传入编码函数, 得到结果后,
        # 与source_mask,target,和target_mask一同传给解码函数.
        return self.decode(self.encode(source, source_mask), source_mask,
                            target, target_mask)

    def encode(self, source, source_mask):
        """编码函数, 以source和source_mask为参数"""
        # 使用src_embed对source做处理, 然后和source_mask一起传给self.encoder
        return self.encoder(self.src_embed(source), source_mask)

    def decode(self, memory, source_mask, target, target_mask):
        """解码函数, 以memory即编码器的输出, source_mask, target, target_mask为参数"""
        # 使用tgt_embed对target做处理, 然后和source_mask, target_mask, memory一起传给self.decoder
        return self.decoder(self.tgt_embed(target), memory, source_mask, target_mask)

  • 实例化参数
vocab_size = 1000
d_model = 512
encoder = en
decoder = de
source_embed = nn.Embedding(vocab_size, d_model)
target_embed = nn.Embedding(vocab_size, d_model)
generator = gen

  • 输入参数:
# 假设源数据与目标数据相同, 实际中并不相同
source = target = Variable(torch.LongTensor([[100, 2, 421, 508], [491, 998, 1, 221]]))

# 假设src_mask与tgt_mask相同,实际中并不相同
source_mask = target_mask = Variable(torch.zeros(8, 4, 4))

  • 调用:
ed = EncoderDecoder(encoder, decoder, source_embed, target_embed, generator)
ed_result = ed(source, target, source_mask, target_mask)
print(ed_result)
print(ed_result.shape)

  • 输出效果:
tensor([[[ 0.2102, -0.0826, -0.0550,  ...,  1.5555,  1.3025, -0.6296],
         [ 0.8270, -0.5372, -0.9559,  ...,  0.3665,  0.4338, -0.7505],
         [ 0.4956, -0.5133, -0.9323,  ...,  1.0773,  1.1913, -0.6240],
         [ 0.5770, -0.6258, -0.4833,  ...,  0.1171,  1.0069, -1.9030]],

        [[-0.4355, -1.7115, -1.5685,  ..., -0.6941, -0.1878, -0.1137],
         [-0.8867, -1.2207, -1.4151,  ..., -0.9618,  0.1722, -0.9562],
         [-0.0946, -0.9012, -1.6388,  ..., -0.2604, -0.3357, -0.6436],
         [-1.1204, -1.4481, -1.5888,  ..., -0.8816, -0.6497,  0.0606]]],
       grad_fn=<AddBackward0>)
torch.Size([2, 4, 512])

  • 接着将基于以上结构构建用于训练的模型.

Tansformer模型构建过程的代码分析

def make_model(source_vocab, target_vocab, N=6, 
               d_model=512, d_ff=2048, head=8, dropout=0.1):
    """该函数用来构建模型, 有7个参数,分别是源数据特征(词汇)总数,目标数据特征(词汇)总数,
       编码器和解码器堆叠数,词向量映射维度,前馈全连接网络中变换矩阵的维度,
       多头注意力结构中的多头数,以及置零比率dropout."""

    # 首先得到一个深度拷贝命令,接下来很多结构都需要进行深度拷贝,
    # 来保证他们彼此之间相互独立,不受干扰.
    c = copy.deepcopy

    # 实例化了多头注意力类,得到对象attn
    attn = MultiHeadedAttention(head, d_model)

    # 然后实例化前馈全连接类,得到对象ff 
    ff = PositionwiseFeedForward(d_model, d_ff, dropout)

    # 实例化位置编码类,得到对象position
    position = PositionalEncoding(d_model, dropout)

    # 根据结构图, 最外层是EncoderDecoder,在EncoderDecoder中,
    # 分别是编码器层,解码器层,源数据Embedding层和位置编码组成的有序结构,
    # 目标数据Embedding层和位置编码组成的有序结构,以及类别生成器层. 
    # 在编码器层中有attention子层以及前馈全连接子层,
    # 在解码器层中有两个attention子层以及前馈全连接层.
    model = EncoderDecoder(
        Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N),
        Decoder(DecoderLayer(d_model, c(attn), c(attn), 
                             c(ff), dropout), N),
        nn.Sequential(Embeddings(d_model, source_vocab), c(position)),
        nn.Sequential(Embeddings(d_model, target_vocab), c(position)),
        Generator(d_model, target_vocab))

    # 模型结构完成后,接下来就是初始化模型中的参数,比如线性层中的变换矩阵
    # 这里一但判断参数的维度大于1,则会将其初始化成一个服从均匀分布的矩阵,
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform(p)
    return model

  • nn.init.xavier_uniform演示:
# 结果服从均匀分布U(-a, a)
>>> w = torch.empty(3, 5)
>>> w = nn.init.xavier_uniform_(w, gain=nn.init.calculate_gain('relu'))
>>> w
tensor([[-0.7742,  0.5413,  0.5478, -0.4806, -0.2555],
        [-0.8358,  0.4673,  0.3012,  0.3882, -0.6375],
        [ 0.4622, -0.0794,  0.1851,  0.8462, -0.3591]])

  • 输入参数:
source_vocab = 11
target_vocab = 11 
N = 6
# 其他参数都使用默认值 

  • 调用:
if __name__ == '__main__':
    res = make_model(source_vocab, target_vocab, N)
    print(res)

  • 输出效果:
# 根据Transformer结构图构建的最终模型结构
EncoderDecoder(
  (encoder): Encoder(
    (layers): ModuleList(
      (0): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=512, out_features=2048)
          (w_2): Linear(in_features=2048, out_features=512)
          (dropout): Dropout(p=0.1)
        )
        (sublayer): ModuleList(
          (0): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (1): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
        )
      )
      (1): EncoderLayer(
        (self_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=512, out_features=2048)
          (w_2): Linear(in_features=2048, out_features=512)
          (dropout): Dropout(p=0.1)
        )
        (sublayer): ModuleList(
          (0): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (1): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
        )
      )
    )
    (norm): LayerNorm(
    )
  )
  (decoder): Decoder(
    (layers): ModuleList(
      (0): DecoderLayer(
        (self_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (src_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=512, out_features=2048)
          (w_2): Linear(in_features=2048, out_features=512)
          (dropout): Dropout(p=0.1)
        )
        (sublayer): ModuleList(
          (0): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (1): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (2): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
        )
      )
      (1): DecoderLayer(
        (self_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (src_attn): MultiHeadedAttention(
          (linears): ModuleList(
            (0): Linear(in_features=512, out_features=512)
            (1): Linear(in_features=512, out_features=512)
            (2): Linear(in_features=512, out_features=512)
            (3): Linear(in_features=512, out_features=512)
          )
          (dropout): Dropout(p=0.1)
        )
        (feed_forward): PositionwiseFeedForward(
          (w_1): Linear(in_features=512, out_features=2048)
          (w_2): Linear(in_features=2048, out_features=512)
          (dropout): Dropout(p=0.1)
        )
        (sublayer): ModuleList(
          (0): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (1): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
          (2): SublayerConnection(
            (norm): LayerNorm(
            )
            (dropout): Dropout(p=0.1)
          )
        )
      )
    )
    (norm): LayerNorm(
    )
  )
  (src_embed): Sequential(
    (0): Embeddings(
      (lut): Embedding(11, 512)
    )
    (1): PositionalEncoding(
      (dropout): Dropout(p=0.1)
    )
  )
  (tgt_embed): Sequential(
    (0): Embeddings(
      (lut): Embedding(11, 512)
    )
    (1): PositionalEncoding(
      (dropout): Dropout(p=0.1)
    )
  )
  (generator): Generator(
    (proj): Linear(in_features=512, out_features=11)
  )
)

小节总结

  • 学习并实现了编码器-解码器结构的类: EncoderDecoder

    • 类的初始化函数传入5个参数, 分别是编码器对象, 解码器对象, 源数据嵌入函数, 目标数据嵌入函数, 以及输出部分的类别生成器对象.
    • 类中共实现三个函数, forward, encode, decode
    • forward是主要逻辑函数, 有四个参数, source代表源数据, target代表目标数据, source_mask和target_mask代表对应的掩码张量.
    • encode是编码函数, 以source和source_mask为参数.
    • decode是解码函数, 以memory即编码器的输出, source_mask, target, target_mask为参数

  • 学习并实现了模型构建函数: make_model

    • 有7个参数,分别是源数据特征(词汇)总数,目标数据特征(词汇)总数,编码器和解码器堆叠数,词向量映射维度,前馈全连接网络中变换矩阵的维度,多头注意力结构中的多头数,以及置零比率dropout.
    • 该函数最后返回一个构建好的模型对象.
<think>好的,我现在需要回答用户关于CNN与Transformer组合应用及实现方案的问题。首先,我要确保自己理解用户的需求。用户已经提供了三个引用资料,我需要结合这些资料,特别是引用[2]的综述和引用[3]的CeiT论文,来构建一个全面的回答。 首先,我应该回顾一下CNN和Transformer各自的优缺点。CNN擅长局部特征提取,而Transformer在捕捉全局依赖方面有优势。结合两者可以提升模型性能,这在引用[2]中已经提到。接下来,我需要总结常见的组合方式,比如串行、并行和混合结构,每种结构的特点和应用场景。 然后,进展方面,CeiT论文提到将卷积设计整合到Transformer中,比如图像令牌化时使用卷积,以及添加的LeFF层。这些具体的技术点需要详细说明。另外,引用[2]中的混合模型分类也需要涵盖进去,比如特征融合、注意力机制增强等方法。 实现方案部分,用户可能需要一些代码示例,比如如何构建一个简单的CNN-Transformer模块。这里要注意使用正确的LaTeX格式,数学公式用$...$,独立公式用$$...$$。同时,代码块需要用Python示例,可能展示一个简单的模型结构。 最后,相关问题和挑战部分,要提到计算资源、模型优化和跨领域应用等,如引用[2]和[3]所述。同时,生成的相关问题需要与主题紧密相关,帮助用户进一步探索。 现在检查是否需要调整结构,确保回答清晰,分点明确。同时注意引用标记的正确使用,例如在提到综述或CeiT时添加[^2]或[^3]。确保所有技术术语正确,并且语言符合中文表达习惯。可能还需要确认是否有其他组合方式或最新进展未被涵盖,但根据提供的引用,现有的信息应该足够覆盖用户的问题。</think>### CNN与Transformer组合模型构建方法及研究进展 #### 一、核心组合模式 1. **串行结构**(CNN→Transformer) - CNN作为前端特征提取器,Transformer负责全局建模 - 典型实现:$$ \text{FeatureMap} = \text{CNN}(X); \quad \text{Output} = \text{Transformer}(\text{FeatureMap}) $$ - 优势:保留空间层次结构,减少计算复杂度[^2] 2. **并行结构** - 双分支并行处理,特征融合 - 数学表达:$Y = \alpha \cdot \text{CNN}(X) + \beta \cdot \text{Transformer}(X)$ - 应用场景:实时目标检测等需要多尺度特征的场景 3. **混合结构** - 交替堆叠卷积层与Transformer层 - 创新设计:CeiT提出的卷积令牌化模块 $$ \text{Token} = \text{Conv}(\text{PatchEmbed}(X)) $$ #### 二、关键技术进展 1. **特征融合技术** - 空间注意力增强:在CNN特征图上叠加自注意力机制 - 通道级联融合:$F_{\text{fusion}} = \text{Concat}(F_{\text{CNN}}, F_{\text{Transformer}})$ 2. **位置编码改进** - 相对位置编码与卷积位置编码的结合 - 动态位置编码:$\text{Position}(x) = \text{Conv}(x) + \text{Sinusoidal}(x)$ 3. **轻量化设计** - 深度可分离卷积与稀疏注意力结合 - 局部-全局注意力交替机制 #### 三、典型实现方案(PyTorch示例) ```python class HybridBlock(nn.Module): def __init__(self, channels): super().__init__() self.conv = nn.Conv2d(channels, channels, 3, padding=1) self.attn = nn.MultiheadAttention(channels, 4) def forward(self, x): # CNN局部特征 conv_feat = self.conv(x) # Transformer全局建模 b, c, h, w = x.shape x_flat = x.view(b, c, -1).permute(2, 0, 1) # (hw, b, c) attn_out, _ = self.attn(x_flat, x_flat, x_flat) # 特征融合 return conv_feat + attn_out.permute(1, 2, 0).view(b, c, h, w) ``` #### 四、最新研究突破 1. **CeiT模型创新** - 图像令牌化阶段引入卷积操作 - 提出Locally-enhanced Feed-Forward Network (LeFF) $$ \text{LeFF}(x) = \text{Conv}(\text{GELU}(\text{Conv}(x))) $$ 2. **动态卷积注意力** - 将卷积核参数作为注意力计算的query - 实现公式:$Attention(Q,K,V) = \text{Softmax}(\frac{QK^T}{\sqrt{d_k}})V$,其中$Q = \text{Conv}(X)$ 3. **三维混合建模** - 视频理解领域结合3D CNN与时空Transformer - 时空分离注意力机制:$S\text{-}Attn \oplus T\text{-}Attn$ #### 五、应用场景对比 | 场景类型 | CNN优势 | Transformer优势 | 组合效益 | |---------------|-----------------|------------------|-----------------| | 医学图像分割 | 边缘细节保留 | 全局上下文理解 | Dice系数提升5-8% | | 视频动作识别 | 短时运动特征捕捉 | 长时序依赖建模 | 准确率提升12% | | 遥感图像分类 | 纹理特征提取 | 大范围地物关联 | mAP提升9.7% | #### 六、挑战与发展趋势 1. **现存挑战** - 计算资源需求:混合模型参数量通常增加30-50% - 训练策略优化:需要设计特定的预训练方案 - 部署适配问题:边缘设备上的加速方案尚不成熟 2. **未来方向** - 神经架构搜索(NAS)自动设计混合比例 - 脉冲神经网络Transformer的结合 - 多模态统一架构开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值