LeetCode每日一题629. K个逆序对数组

这篇博客介绍了如何解决LeetCode上的一个算法问题——寻找包含从1到n的数字且有k个逆序对的不同数组数量。作者通过动态规划的方法实现了解决方案,并在代码中给出了详细的计算过程。在例子中,分别展示了n=3,k=0和k=1时的情况。通过每天做这样的题目,作者感觉自己的编程能力得到了提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

629. K个逆序对数组

给出两个整数 n 和 k,找出所有包含从 1 到 n 的数字,且恰好拥有 k 个逆序对的不同的数组的个数。
逆序对的定义如下:对于数组的第i个和第 j个元素,如果满i < j且 a[i] > a[j],则其为一个逆序对;否则不是。
由于答案可能很大,只需要返回 答案 mod 109 + 7 的值。
n 的范围是 [1, 1000] 并且 k 的范围是 [0, 1000]

示例1:

输入: n = 3, k = 0
输出: 1
解释:
只有数组 [1,2,3] 包含了从1到3的整数并且正好拥有 0 个逆序对。

示例2:

输入: n = 3, k = 1
输出: 2
解释:
数组 [1,3,2] 和 [2,1,3] 都有 1 个逆序对。

代码:

class Solution {
	final int MOD = (int) 1e9 + 7;

	public int kInversePairs(int n, int k) {
		long[][] dp = new long[n + 1][k + 1];
		dp[0][0] = 1;
		for (int i = 1; i <= n; i++) {
			dp[i][0] = 1;
			for (int j = 1; j <= k; j++) {
				dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
				if (j >= i)
					dp[i][j] -= dp[i - 1][j - i];
				if (dp[i][j] < 0)
					dp[i][j] += MOD;
				dp[i][j] = dp[i][j] % MOD;
			}
		}
		return (int) dp[n][k];
	}
}

执行结果:
Alt
总结: LeetCode打卡第十六天,通过每天做题可以看到自己的不足,提升自己的能力,在做题中慢慢进步,但是代码编程能力还有待提高,还需要继续加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值