
复杂网络 【GNN专栏】
文章平均质量分 92
采用图神经网络在复杂网络研究方向中的论文,尽量确保总结新鲜出炉的论文总结
七扭八拐
一个会做复杂网络的研三学长
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
图解析网络【Published as a conference paper at ICLR 2024】
motivation:图池是建立在GNN之上的。它旨在通过将一组节点及其底层结构压缩为更简洁的表示来捕获图级信息。早期的图池化方法,如mean,add或pool对图中的所有节点执行排列不变操作。这些平面池化方法忽略了节点之间的区别,无法对图中的潜在层次结构进行建模。因此,它们只能以粗略的方式在图级捕获信息。为了克服这一限制,他们转而对图数据进行分层池化,以更准确地捕获结构信息。主要的方法是节点删除和节点聚类。节点删除方法通过在每一步删除一定比例的节点来减小图的大小。原创 2024-11-07 15:38:03 · 1734 阅读 · 0 评论 -
2024 nature| 基于motif(模体)的药物相互作用预测——采用局部和全局自注意力机制
药物-药物相互作用(DDIs)是制药研究和临床应用中的重要问题,因为它们可能导致严重的不良反应或药物撤市。许多深度学习模型在DDI预测中取得了很高的性能,但在揭示DDI潜在原因的模型可解释性方面尚未得到广泛探索。作者提出了一种名为MeTDDI的深度学习框架,它结合了局部-全局自注意力机制和协同注意力机制,用于学习motif-based graphs进行DDI预测。与最先进的模型相比,MeTDDI在性能上表现出竞争力。原创 2024-11-04 11:38:51 · 2736 阅读 · 0 评论