金融评分卡项目—3.流失预警模型中的数据预处理与特征衍生

本文介绍了金融评分卡项目中,针对流失预警模型的数据预处理和特征衍生。讨论了极端值的监测与处理,如3σ准则;缺失值的种类与处理方法,包括连续和类别变量的处理;特殊变量如类别变量和日期/时间型变量的处理策略;以及如何利用内外部数据构建流失行为的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



引言

  以下部分完整代码见Github:https://github.com/Libra-1023/data-mining/blob/master/Bank_customer_churn/outlier_missingvalues_date_process.ipynb

一、极端值的处理

  极端值又称为离群值,往往会扭曲预测结果会影响模型精度。回归模型中离群值的影响尤其大,使用该模型我们需要先对其进行监测和处理。

1.极端值(异常值)监测的重要性
  • 需要自己判断极端值对建模的影响,并结合实际问题选取处理方法
  • 检测极端值的重要性:由于极端值的存在,模型的估计和预测可能会有很大的偏差和变化
  • 可以选择对极端值不敏感的模型,例如KNN,决策树

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值