fMRIPrep 是一个神经成像预处理工具,用于基于任务和静息状态的功能性 MRI(fMRI)的预处理。fMRIPrep 的相关不过多赘述,这里主要介绍 fMRIPrep 的 [--cifti-output] 的输出。
fMRIPrep 支持两种分辨率的输出,即 91K 和170K,两种的生成方式一样,只是 fsLR 的Surface 标准空间不同,cifti-91K 对应的fsLR分辨率是 32K(32492),cifti-170K 对应的是 fsLR 是 59K(59292)。
此文举例分析说明 fMRIPrep 的 CIFTI 输出,数据采用的是 OpenNeuro 的 ds000224-MSC05的 ses-struct01 和 ses-func01,分别对应着结构 anat 数据和功能 func 数据,添加参数 [--cifti-output]为 91K。
此文章内容全为自己研究整理 ,如有问题或错误欢迎评论纠正,感谢!
1. anat结构部分
fMRIPrep 结构部分支持三种数据文件输出,脑沟深度 sulc (sulcal depth)、大脑皮层厚度 thickness、大脑皮层曲率 curv (cortical curvature),如下:
三种数据生成方式有所不同,流程图已画出:
对于流程图的过程解释:
1. mris_convert -c : freesurfer的命令,用来皮质表面文件格式之间转换。
2. invert_ *: 就是将数值反转取负,至于为什么反转,因为CIFTI是HCP提出的,HCP的流程规定的。
3. abs_thickness: thickness特有步骤,就是必须全取正。
4. metric_dilate: Workbench Command 命令(wb_command -metric-dilate),作用就是通过线性插值把空隙位置填满。(在结构部分不明显,功能效果较明显在后面有介绍)
5. resample_to_fsLR: Workbench Command 命令(wb_command -metric-resample)完成,就是配准到标准fsLR空间。方法用的是ADAP_BARY_AREA。
6.mask_fsLR:Workbench Command 命令(wb_command -metric-mask)就是去掉左右脑连接部分,对研究没有意义的。
以curv为图例展示:






2. func功能部分
fMRIPrep每个BOLD数据都会生成一个.dtseries时间序列CIFTI格式文件,如下:
json里存放着用的 SpatialReference 等信息
流程图展示:
对于流程图的过程解释:
1. volume_to_surface: 命令 wb_command -volume-to-surface-mapping,从volume投到surface
图例展示,其中第一步 volume_to_surface,从图中可以看到有很多小孔(试了几个数据都会有这种情况),然后第二个步骤 metric_dilate “填满”就显得很重要了:






感谢阅读!