关于fMRIPrep的CIFTI

        fMRIPrep 是一个神经成像预处理工具,用于基于任务和静息状态的功能性 MRI(fMRI)的预处理。fMRIPrep 的相关不过多赘述,这里主要介绍 fMRIPrep 的 [--cifti-output] 的输出。

        fMRIPrep 支持两种分辨率的输出,即 91K 和170K,两种的生成方式一样,只是 fsLR 的Surface 标准空间不同,cifti-91K 对应的fsLR分辨率是 32K(32492),cifti-170K 对应的是 fsLR 是 59K(59292)。

        此文举例分析说明 fMRIPrep 的 CIFTI 输出,数据采用的是 OpenNeuro 的 ds000224-MSC05的 ses-struct01 和 ses-func01,分别对应着结构 anat 数据和功能 func 数据,添加参数 [--cifti-output]为 91K。

        此文章内容全为自己研究整理 ,如有问题或错误欢迎评论纠正,感谢!

1. anat结构部分

        fMRIPrep 结构部分支持三种数据文件输出,脑沟深度 sulc (sulcal depth)、大脑皮层厚度 thickness、大脑皮层曲率 curv (cortical curvature),如下:

        三种数据生成方式有所不同,流程图已画出:

        对于流程图的过程解释:

        1. mris_convert -c : freesurfer的命令,用来皮质表面文件格式之间转换。

        2. invert_ *: 就是将数值反转取负,至于为什么反转,因为CIFTI是HCP提出的,HCP的流程规定的。

        3. abs_thickness: thickness特有步骤,就是必须全取正。

        4. metric_dilate: Workbench Command 命令(wb_command -metric-dilate),作用就是通过线性插值把空隙位置填满。(在结构部分不明显,功能效果较明显在后面有介绍)

        5. resample_to_fsLR: Workbench Command 命令(wb_command -metric-resample)完成,就是配准到标准fsLR空间。方法用的是ADAP_BARY_AREA

        6.mask_fsLR:Workbench Command 命令(wb_command -metric-mask)就是去掉左右脑连接部分,对研究没有意义的。

        以curv为图例展示:

1.转成gii格式
2.反转数值

3.扩张表面填充
4.采样到fsLR空间

5.mask中间连接处
6.生成cifti

2. func功能部分

        fMRIPrep每个BOLD数据都会生成一个.dtseries时间序列CIFTI格式文件,如下:

        json里存放着用的 SpatialReference 等信息

        流程图展示: 

        对于流程图的过程解释:

1. volume_to_surface: 命令 wb_command -volume-to-surface-mapping,从volume投到surface

        图例展示,其中第一步 volume_to_surface,从图中可以看到有很多小孔(试了几个数据都会有这种情况),然后第二个步骤 metric_dilate “填满”就显得很重要了:

1.从volume投到surface
2.扩张表面填充
3.mask中间连接处
4.采样到fsLR空间

5.再次mask中间连接处
6.生成cifti

                感谢阅读!

### fsLR Space Neuroimaging Data Processing #### Understanding the fsLR Surface Space The "fsLR" space represents a fusion between FreeSurfer and HCP (Human Connectome Project) linear registration spaces. This is specifically designed as a surface-based coordinate system where data are mapped onto the cortical surfaces rather than being confined within three-dimensional volumes[^1]. The advantage lies in its ability to facilitate more precise localization of cortical regions, enhancing structural and functional analyses. #### Integration with fMRIPrep for Preprocessing For preprocessing neuroimaging datasets intended for analysis in the fsLR space, tools like `fMRIPrep` can be utilized effectively. By specifying the option `--cifti-output`, users enable generation of outputs compatible with this specialized spatial reference frame[^3]. ```bash fmriprep bids_dir output_dir participant \ --cifti-output \ --output-spaces fsLR ... ``` This command ensures that processed images will conform to the requirements necessary for subsequent operations involving the fsLR space. #### Visualization Techniques Using R Once preprocessed, visualization plays an essential role in interpreting results obtained from studies conducted under the fsLR framework. Utilizing programming languages such as R allows researchers to create insightful graphical representations which aid understanding complex patterns present within these high-resolution connectomes[^2]: ```r library(neuRosim) data(brain) # Example plot function call plot_brain_image(brain_data = brain, type = 'surface', template = 'fsLR') ``` Through leveraging both advanced software solutions alongside effective presentation methods, investigators gain powerful means by which they may explore intricate aspects concerning human cognition directly linked back to specific areas across our cerebral cortices when working inside the unique context provided through adoption of the fsLR standardization scheme.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值