Meta:通过推理创建LLM高质量数据

在这里插入图片描述

📖标题:CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
🌐来源:arXiv, 2507.23751

🌟摘要

我们提出了 CoT-Self-Instruct,这是一种合成数据生成方法,指示 LLM 首先根据给定的种子任务通过 Chain-of-Thought (CoT) 进行推理和计划,然后生成一个新的合成提示,用于 LLM 训练,然后使用自动指标过滤高质量的数据。在可验证的推理中,我们的合成数据显着优于现有的训练数据集,例如 s1k 和 OpenMathReasoning,跨越 MATH500、AMC23、AIME24 和 GPQA-Diamond。对于不可验证的指令跟踪任务,我们的方法在 AlpacaEval 2.0 和 Arena-Hard 上都超过了人类或标准自构造提示的性能。

🛎️文章简介

🔸研究问题:如何生成高质量的合成数据以提升大语言模型(LLM)在推理和非推理任务中的表现?
🔸主要贡献:论文提出了一种新颖的CoT-Self-Instruct方法,通过推理创建高质量合成提示,并对生成的数据进行自我过滤。

📝重点思路

🔸利用小规模的高质量人工标注种子数据,使用CoT方法逐步推理生成新的合成指令。
🔸对于可验证推理任务,采用Answer-Consistency方法过滤数据,确保生成的合成答案与大多数模型输出一致。
🔸对非可验证任务,使用Rejecting Instruction Preferences (RIP)方法,根据评分模型对生成的响应进行评估并进行筛选。
🔸进行自我训练,通过强化学习(RL)训练使用合成数据生成的新指令,增强模型的推理能力。

🔎分析总结

🔸实验表明,使用CoT-Self-Instruct生成的合成指令在多个基准任务上表现优于Self-Instruct和现有的数据集。
🔸实施Answer-Consistency过滤后,合成数据在可验证推理任务中的平均准确率从53.0%提升至58.7%。
🔸对于非可验证任务,采用RIP过滤后,合成指令的性能从53.9%提升至54.7%,同时超越了基于人类标注的提示。
🔸整体而言,该方法在生成的合成数据上展现出更高的质量,从而提升了模型的整体性能。

💡个人观点

论文的创新点在于结合推理过程生成合成数据,通过有效的过滤机制提高了数据的质量。

🧩附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值