R语言分位数回归:线性假设突破、贝叶斯先验解析、非线性拓展实战到随机森林预测等

分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。

分位数回归是一种较新的回归技术,在实践中与普通的线性回归有很大区别,在理论上比线性回归复杂很多。

第一章 线性回归假设与分位数函数

1.线性回归的本质

2.线性回归的基本假设

3.最小二乘法与极大似然法

4.线性回归的推广与分位数函数

第二章 线性分位数回归

1.最小一乘法及其推广

2.分位数回归结果的解释

3.显著性检验

4.分位数回归的拟合优度检验

第三章 贝叶斯分位数回归

1.贝叶斯统计学的基本概念

2.非对称拉普拉斯先验

3.贝叶斯分位数回归

第四章 超越线性分位数回归

1.非线性分位数回归

2.非参数分位数回归

3.广义分位数回归及其贝叶斯版本

4.线性分位数混合效应模型

5.CDF-分位数回归

6.分位数随机森林


★ 点 击 下 方 关 注,获取海量教程和资源!

↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值