数百倍加速!港科大最新:嵌入式平台上实时运行的NeRF SLAM!

港科大与中山大学的研究提出Photo-SLAM,解决了NeRF SLAM在嵌入式设备上运行的难题,实现了实时运行并提升了数百倍的渲染速度。该方法结合显式几何与隐式光度特征,适用于单目、双目、RGBD三种模式,且在不同设备上展示了优越的定位和建图效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来源:计算机视觉工坊

添加微信:dddvision,备注:NeRF,拉你入群。文末附行业细分群

0. 笔者个人体会

传统的NeRF和NeRF SLAM所需要的计算量非常大,很难在嵌入式设备上跑起来,这也就很大程度上限制了NeRF SLAM的落地。

但最近港科大&中山大学提出了一项工作Photo-SLAM,不仅实现了高保真的建图,还可以在嵌入式设备上实时运行,甚至渲染速度提高了数百倍。

下面一起来阅读一下这项工作,文末附论文链接~

1. 这篇文章希望解决什么问题?

现有的NeRF SLAM一方面严重依赖隐式表示,计算量非常大,很难部署在嵌入式设备上,一方面需要深度信息来加快NeRF收敛。所以现有的NeRF SLAM大多停留在理论阶段。

Photo-SLAM这项工作就希望在嵌入式设备上同时实现精确定位和在线真实感建图,也是第一个基于超基元地图的NeRF SLAM方案,而且适应单目、双目、RGBD三种模式!这里也推荐工坊推出的新课程《深度剖析面向机器人领域的3D激光SLAM技术原理、代码与实战》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值