0. 论文信息
标题:ROLO-SLAM: Rotation-Optimized LiDAR-Only SLAM in Uneven Terrain with Ground Vehicle
作者:Yinchuan Wang, Bin Ren, Xiang Zhang, Pengyu Wang, Chaoqun Wang, Rui Song, Yibin Li, Max Q.-H. Meng
机构:Shandong University、Southern University of Science and Technology
原文链接:https://arxiv.org/abs/2501.02166
代码链接:https://github.com/sdwyc/rolo
1. 导读
基于激光雷达的SLAM被认为是在恶劣环境中提供定位指导的一种有效方法。然而,当经过不平坦的地形时,现有的基于激光雷达的SLAM方法遭受显著的姿态估计漂移,特别是与垂直方向相关的分量。这种缺陷通常会导致明显扭曲的全球地图。本文提出了一种基于激光雷达的SLAM方法来提高粗糙地形中地面车辆的姿态估计精度,称为旋转优化的仅激光雷达(ROLO) SLAM。该方法利用前向位置预测来粗略地消除连续扫描的位置差异,从而能够在前端单独和精确地确定位置和方向。此外,我们采用了一个并行的空间体素化的对应匹配。我们在每一个体素内发展了一个球面对准引导的旋转配准来估计车辆的旋转。通过引入几何对准,我们将运动约束引入到优化公式中,以增强对激光雷达平移的快速有效估计。随后,我们提取几个关键帧来构建子地图,并利用从当前扫描到子地图的对准来进行精确的姿态估计。同时,建立了一个全局尺度的因子图来帮助减少累积误差。在不同的场景中,进行了不同的实验来评估我们的方法。结果表明,ROLO-SLAM在地面车辆姿态估计方面表现出色,并优于现有的最新激光雷达SLAM框架。
2. 效果展示
上图显示了一辆在越野场景中行驶的真实车辆。下图显示了点云图和ROLO-SLAM输出的轨迹。