【算法 - 动态规划】最长公共子序列问题

在上两篇文章中,我们将 暴力递归 逐步修改成为 动态规划 ,并介绍了有严格 dp表依赖 和无表依赖结构的解题方法。其中,前篇文章中的纸牌博弈问题属于 [L , R]上范围尝试模型。该模型给定一个范围,在该范围上进行尝试,套路就是 思考 [L ,R] 两端该如何取舍。

本篇文章我们学习一个新的模型: 样本对应模型,该模型的套路就是 以结尾位置为出发点,思考两个样本的结尾都会产生哪些可能性

力扣1143:最长公共子序列

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例 1:

输入: text1 = “abcde”, text2 = “ace”

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

强连通子图

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值