前言
因使用transformer,需要安装cuda及对应版本的pytorch
解决问题的核心就是版本匹配,版本匹配,版本匹配,重要的事情说三遍。
一、检查本机GPU版本,如果版本过低先升级驱动版本
在cmd中输入nvida-smi查询当前电脑的gpu版本,我的是10.1
该版本太旧了,在后面pytorch的官方网站上查询,地址:https://pytorch.org/get-started/locally/
可以看到要想下载匹配的pytorch,至少需要cuda11.8,所以我们必须先把驱动升级到11.8。
(1)检查本机GPU驱动版本及CUDA版本
(2)查看使用pytorch的最低CUDA版本
(3)升级自己本机GPU驱动
请根据自己的电脑gpu更新驱动,我的是GT730,手动查找对应的驱动。安装。升级到了475.14。
https://www.nvidia.cn/drivers/lookup/
装exe文件,解压的时候记住路径,以免解压完找不到存哪了。傻瓜式下一步就可以了。
安装完再次使用nvida-smi查询当前电脑的gpu驱动版本,发现已经变成了475.14
二、到invida官网下载对应的CUDA版本,并安装
(1)查询驱动与cuda版本的对应关系
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
475.14对应的是CUDA11.4,还是没办法满足11.8,但是尽力了,试试吧。百度搜索CUDA11.4,在英伟达的官网下载相应版本安装exe
安装完再次使用nvida-smi查询当前电脑的CUDA版本,发现已经变成了11.4
三、下载对应的pytorch版本,并安装
pytorch官网会给出已安装CUDA匹配的pytorch版本资源,请下载安装
https://pytorch.org/get-started/locally/
进入自己的环境:activate tensorflow
安装对应版本的pytorch:pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
四、其他
为了方便管理不同项目的python环境,通常一个系统里会部署不同的环境。我使用了anaconda的环境,安装时,一定要进入该项目所在环境,别安装到其他位置了。
重启,运行代码,成功。
总结
重要的事情说三遍:版本匹配,版本匹配,版本匹配。
这里涉及到三个版本:本机GPU驱动版本、CUDA版本、pytorch版本,依次匹配即可。