RNN-应用场景
语音识别
音乐生成
情感分析:根据输入的评论,猜测评论的分数。
DNA序列分析
语言翻译等
带时间序列应用的场景
后面产生的结果,是受到前面结果的影响的。

区别于神经网络预测
神经网络的输入的特征都是固定不变的,强调特征的位置。
标准的神经网络是不适合用来处理带时间序列的模型的。
但是RNN 可以处理
RNN网络结构

将每一个时间状态 进行串联
后面的状态后受到前面状态的影响
单个单元

当前的x 和 前一个状态 a的t-1
tanh激活函数 学习非线性的部分

输出还乘以权重+偏置

比喻理解:
a的t-1状态,和男朋友吵架。
输入 x的t,闺蜜煽风点