3.2 激活函数和常见的优化算法

本文详细介绍了常见的激活函数sigmoid、ReLU和tanh,以及优化器如SGD、RMSProp和Adam的原理、参数和应用场合。了解这些基础知识有助于提升深度学习模型的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1)常见的激活函数

1、sigmoid激活函数

一般用于二分类的输出

2、relu激活函数

 

3、tanh激活函数

 

2)常见的优化函数

优化器(optimizer)是编译Keras模型的所需的两个参数之一。
你可以先实例化一个优化器对象,然后将它传入model.compile(),或者你可以通过名称来调用优化器。在后一种情况下,将使用优化器的默认参数。

1)SGD(随机梯度下降优化器)

        随机梯度下降优化器SGD和min-batch是同一个意思,抽取m个小批量(独立同分布)样本,通过计算他们平梯度均值。

        SGD参数:

                Ir: float >= 0.学习率。
                momentum: float >=0.参数,用于加速SGD在相关方向上前进,并抑制震荡。                         decay: float >= 0.每次参数更新后学习率衰减值。                                  nesterov: boolean.是否使用Nesterov动量。

2)RMSProp

        RMSprop:  经验上,RMSProp被证明有效且实用的深度学习网络优化算法.
        RMSProp增加了一个衰减系数来控制历史信息的获取多少,
        RMSProp会对学习率进行衰减。

        建议使用优化器的默认参数(除了学习率lr,它可以被自由调节)
        这个优化器通常是训练循环神经网络RNN的不错选择。

        RMSProp参数:

                Ir: float >= 0.学习率。
                rho: float > = 0.RMSProp梯度平方的移动均值的衰减率.                                                        epsilon: float >= 0.模糊因子.若为None,默认为K.epsilon()。
                decay: float >= 0.每次参数更新后学习率衰减值。

3)Adam优化器

        1.Adam算法可以看做是修正后的 Momentum+RMSProp 算法.
        2.Adam通常被认为对超参数的选择相当鲁棒
        3.学习率建议为0.001

        Adam是一种可以替代传统随机梯度下降过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重。
        Adam通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。

        Adam常见参数:

                lr: float > = 0.学习率。b
                beta_1: float, 0 < beta < 1.通常接近于1。
                beta_2: float, 0 < beta <1.通常接近于1。
                decay: float >= 0.每次参数更新后学习率衰减值。

### 融合优化技术在深度学习算法中的应用与实现 #### 3.1 多学科融合背景下的深度学习优化 多领域知识技术的融合能够显著提升深度学习模型的表现。例如,在计算流体动力学(CFD)中引入深度学习可以增强传统CFD软件的能力,通过预测复杂流动模式来加速仿真并提高准确性[^2]。 #### 3.2 数据质量改善措施 对于任何类型的深度学习任务来说,高质量的数据都是至关重要的。特别是在医学影像识别等领域,获取标注精确、覆盖广泛病种及成像条件变化的大规模图像集有助于构建更加稳健可靠的诊断辅助系统。为此,可以通过增加样本数量、多样化采集源以及严格控制预处理流程等方式来确保输入数据的质量[^3]。 #### 3.3 模型架构创新 为了更好地适应特定应用场景的需求,研究人员不断探索新的网络拓扑结构及其变体形式。比如卷积神经网络(Convolutional Neural Networks, CNNs),其独特的局部感受野机制非常适合处理具有空间关联特征的任务;而循环神经网络(Recurrent Neural Networks,RNNs)则擅长捕捉时间序列间的依赖关系。此外还有诸如Transformer这样的新兴框架正在改变自然语言处理乃至更多领域的游戏规则。 #### 3.4 训练策略调整 合理设置超参数如学习率、批大小(batch size)等会对最终收敛速度性能产生重要影响。实践中常用的技术手段包括但不限于自适应动量估计法(Adam),它能够在不同维度上动态调节步长从而加快寻优进程;另外交叉熵损失配合softmax激活函数也是分类问题中最常见的组合之一[^4]。 ```python from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers import Adam model = Sequential([ Dense(64, activation=&#39;relu&#39;, input_shape=(input_dim,)), Dropout(0.5), Dense(num_classes, activation=&#39;softmax&#39;) ]) optimizer = Adam(lr=0.01) model.compile(optimizer=optimizer, loss=&#39;categorical_crossentropy&#39;, metrics=[&#39;accuracy&#39;]) ``` #### 3.5 集成方法的应用 当单个模型难以达到预期效果时,考虑采用集成方案不失为一种有效途径。Bagging、Boosting Stacking 是三种主流思路,它们分别侧重于减少方差、偏差或综合两者优势以获得更好的泛化能力。尤其是在面对高度不平衡类别分布的情况下,适当加权投票表决往往能取得不错的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值