3.4 信用卡欺诈预测代码实现

import keras
from keras import layers
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

data = pd.read_csv('./dataset/credit-a.csv', header=None)

x = data.iloc[:, :-1].values
y = data.iloc[:,-1].replace(-1,0).values.reshape(-1, 1)
y.shape, x.shape

model = keras.Sequential()
model.add(layers.Dense(128, input_shape=(None, 15), activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))

model.summary()

model.compile(optimizer='adam',
             loss='binary_crossentropy',
             metrics=['acc']
             )

history = model.fit(x,y,epochs=1000)

history.history.keys()

plt.plot(history.epoch, history.history.get('loss'), c='r')
plt.plot(history.epoch, history.history.get('acc'), c='b')

最后的预测结果。但是这是在训练数据上的预测结果。。。这个正确率并不是一个客观的评价,需要改进。。可以将现有数据进行一个划分,划分为训练数据集测试数据集

本机电脑上运行后的 loss 和 acc 随 Epoch的次数 的变化曲线图

基于JupyterNoteBook(Annaconda3)搭建的tensorflow开发环境。

所使用到的数据集见我的博客上传的资源中,欢迎大家下载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值