import keras
from keras import layers
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data = pd.read_csv('./dataset/credit-a.csv', header=None)
x = data.iloc[:, :-1].values
y = data.iloc[:,-1].replace(-1,0).values.reshape(-1, 1)
y.shape, x.shape
model = keras.Sequential()
model.add(layers.Dense(128, input_shape=(None, 15), activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['acc']
)
history = model.fit(x,y,epochs=1000)
history.history.keys()
plt.plot(history.epoch, history.history.get('loss'), c='r')
plt.plot(history.epoch, history.history.get('acc'), c='b')
最后的预测结果。但是这是在训练数据上的预测结果。。。这个正确率并不是一个客观的评价,需要改进。。可以将现有数据进行一个划分,划分为训练数据集 和 测试数据集
本机电脑上运行后的 loss 和 acc 随 Epoch的次数 的变化曲线图
基于JupyterNoteBook(Annaconda3)搭建的tensorflow开发环境。
所使用到的数据集见我的博客上传的资源中,欢迎大家下载。