24.5.3数据结构|顺序表错误代码(别看了,都是错的代码,丢人)

别看了,都是错的代码,丢人啊。

别把你们带到沟里了。不过也没事,你们不知道我是谁,哈哈哈哈哈,那就好,那就好。丢不到多少人。没关系没关系。

目录

别看了,都是错的代码,丢人啊。

一、顺序表的删除函数

错误代码运行结果:

疑惑:

错因:

二、插入->扩容函数

运行结果:

错因:

正确步骤:

疑问:

修改1:

 问题已解决,代码不便公开,见谅。

三、show函数

错误代码:

错误代码运行结果 :

疑惑:

错因:

正确代码: 


一、顺序表的删除函数

错误代码:

错误代码运行结果:

疑惑:

为什么??消失了??

错因:

能感觉到,写的很乱。--seq->len更新的那两句放到for循环里很明显就不对。

改:

1、写一个findSeq函数来找删除的元素的位置

正确代码:

正确代码的运行结果:

deletSeq(seq,100);

 

啊啊啊啊啊啊啊啊啊啊啊啊啊,终于写完了!!!!!!!!!!!!!!!! 

二、插入->扩容函数

错误代码:

### 配置 PyTorch 在 Anaconda 24.5.0 为了在 Anaconda 版本 24.5.0 中成功配置 PyTorch,需遵循特定步骤来确保环境设置无误。考虑到提及的错误信息表明 GPU 请求失败[^1],这提示安装过程中需要注意硬件兼容性和软件版本匹配。 #### 创建并激活 Conda 环境 建议创建一个新的 conda 虚拟环境专门用于 PyTorch 的开发工作。通过这种方式可以有效管理依赖关系,并减少不同项目间的冲突可能性。 ```bash conda create --name pytorch_env python=3.9 conda activate pytorch_env ``` #### 安装 PyTorch 及其依赖项 对于希望利用 GPU 加速计算能力的情况,在安装时应当指定 CUDA 和 cuDNN 的版本号以确保与本地硬件相适配。如果机器确实支持 NVIDIA 显卡,则可以通过如下命令完成带有 CUDA 支持的 PyTorch 安装;反之则选择 CPU-only 版本。 ```bash # 对于有GPU支持的系统 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch # 或者仅限CPU使用的版本 conda install pytorch torchvision torchaudio cpuonly -c pytorch ``` #### 测试安装是否成功 最后一步是验证 PyTorch 是否能够正常运行以及确认所选设备(CPU/GPU)。下面给出了一段简单的 Python 代码片段来进行测试: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): device = "cuda" else: device = "cpu" tensor_example = torch.tensor([1., 2., 3.], device=device) print(tensor_example) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幼稚鬼?

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值