目录
前言
最近邻回归(K-nearest neighbors regression,简称KNN回归)是一种简单而又直观的非参数回归方法。与其他回归方法不同,KNN回归不需要对数据进行假设,而是直接利用数据中的实例进行预测。在这种方法中,预测结果是由最接近输入实例的K个训练样本的输出值的加权平均得到的。KNN回归在数据量较小,且数据之间的关系较为复杂时表现出色,但在处理大规模数据时可能效率较低。
一、基本概念
1. KNN回归的原理
KNN回归的原理非常简单,它主要包括以下几个步骤:
计算距离: 对于给定的预测样本,首先计算它与训练集中每个样本之间的距离。通常采用的距离度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。
找出最近邻: 从训练集中选取与预测样本距离最近的K个样本。
计算预测值: 对于回归问题,预测值通常是这K个最近邻样本输出值的加权平均。
2. KNN回归的工作原理举例
假设我们有一个包含多个特征(如房屋面积、房间数量等)和对应房价的训练数据集。现在有一个新的房屋,我们想要预测它的房价。这时我们可以使用KNN回归:
-
对于这个新的房屋,我们计算它与训练集中每