力扣-->#剑指Offer 54. 螺旋矩阵

这篇博客详细介绍了如何实现一种类似于正方形螺旋矩阵的长方形矩阵遍历算法。该算法遵循从左到右、从上到下、从右到左、从下到上的顺时针顺序填充数字,并给出了关键的跳出循环条件和for循环条件。同时,提供了具体的Java代码实现,展示了如何创建并返回按螺旋顺序填充的数字列表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这个矩阵有可能是长方形的,但是和正方形的螺旋矩阵差不多,只需要注意两点:

跳出循环的条件以及For循环的条件 

(1)他是矩阵,先创建二维数组new int[m][n];

(2)数字是从左到右,从上到下,从右到左,从下到上的顺序(顺时针)

(3)从左到右的时候,二维数组的第一个参数不变,第二个参数变

(4)从上到下的时候,二维数组的第一个参数变, 第二个参数不变

(5)从右到左的时候,二维数组的第一个参数不变,第二个参数变

(6)从下到上的时候,二维数组的第一个参数变, 第二个参数不变

(7)for循环的条件i<=r&&num!=n*m 十分重要,如果矩阵是长方形,没有这个num!=n*m这个条件则是错的,可以自己简单画个2*3的矩阵走一遍流程就知道

 

class Solution {
    public List<Integer> spiralOrder(int[][] matrix) {
        int m=matrix.length;
        int n=matrix[0].length;
        int t=0,b=m-1,l=0,r=n-1,num=0;
        List<Integer> list=new ArrayList<>();
        while(num!=n*m){
            for(int i=l;i<=r&&num!=n*m;i++) {
                list.add(matrix[t][i]);
                num++;
            }
            t++;
            for(int i=t;i<=b&&num!=n*m;i++) {
                list.add(matrix[i][r]);
                num++;
            }
            r--;
            for(int i=r;i>=l&&num!=n*m;i--) {
                list.add(matrix[b][i]);
                num++;
            }
            b--;
            for(int i=b;i>=t&&num!=n*m;i--) {
                list.add(matrix[i][l]);
                num++;
            }
            l++;
        }
        return list;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值