MobileNetV2简述(图像分类篇)

本文介绍了MobileNetV2的关键改进,包括倒残差结构、线性瓶颈层及激活函数的改变。通过这些优化,该模型在保持较小体积的同时提高了准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章是对博主视频讲解的一些总结。
博主链接:https://blog.csdn.net/qq_37541097?spm=1001.2014.3001.5509

1.预言

MobileNetV2来自2018年,出自Goole团队之手。相比于V1肯定更牛

  • 准确率更高
  • 模型更小

2.亮点

  • 1.Inverted Residuals 倒残差结构
  • 2.Linear Bottlenecks

2.1 倒残差结构

倒残差结构的区别
在这里插入图片描述

倒残差结构是否带有shortcut
条件:
当stride=1且输入特征矩阵的shape与输出特征矩阵的shape相同时才有shortcut
在这里插入图片描述

2.2 激活函数的替换

不采用Relu,而是Linear,目的是防止Relu破坏特征
在这里插入图片描述
在这里插入图片描述

3.网络结构介绍

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

栋哥爱做饭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值