机器学习经典教材与视频总结

这篇博客深入探讨了机器学习的两大派别——统计学习方法和概率图模型。通过《统计学习方法》和《PRML》这两本经典教材,介绍了包括K朴决逻、E隐条、回分神核稀图混近采连顺组在内的核心概念,如连续潜在变量、VC维、正则化和SVM。同时,推荐了林轩田的视频课程,帮助读者更好地理解线性模型和SVM等重要技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 门派

  • 频率派:统计机器学习。
  • 贝叶斯派:概率图模型。

1. 教材

  • 统计学习方法:感K朴决逻,支提E隐条。属于统计机器学习。
  • PRML:回分神核稀 图混近采连 顺组。属于概率图模型。
    • 其中连指的是连续潜在变量。

2. 视频

  • 林轩田的机器学习基石:VC维、正则化、线性模型等。
  • 林轩田的机器学习技法:SVM等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值