从零到一:ESP32与豆包大模型的RTC连续对话实现指南

一、对话效果演示

ESP32与豆包大模型的RTC连续对话

二、ESP-ADF 介绍

乐鑫 ESP-ADF(Espressif Audio Development Framework)是乐鑫科技(Espressif Systems)专为 ESP32 系列芯片开发的一款音频开发框架。它旨在简化基于 ESP32 芯片的音频应用的开发,提供丰富的音频功能和工具,帮助开发者快速构建高质量的音频产品。

1、主要特点

1.1、跨平台支持

ESP-ADF 支持多种操作系统,包括 FreeRTOS 和 Linux,适用于不同的开发环境。

1.2、丰富的音频功能

  • 支持多种音频格式(如 MP3、AAC、WAV、FLAC、OPUS 等)的解码和编码。
  • 提供音频流处理功能,支持网络流媒体(如 HTTP、HLS、RTSP)和本地文件播放。
  • 支持音频效果处理,如均衡器、混音、回声消除等。

1.3、模块化设计

ESP-ADF 采用模块化设计,开发者可以根据需求灵活选择功能模块,降低开发复杂度。

1.4、易于集成

提供丰富的 API 和示例代码,方便开发者快速上手并集成到现有项目中。

1.5、支持多种外设

  • 支持 I2S、PWM、DAC 等音频接口。
  • 兼容多种麦克风、扬声器和音频编解码器。

1.6、低功耗设计

针对 ESP32 的低功耗特性优化,适合电池供电的音频设备。

2、主要组件

2.1、音频管道(Audio Pipeline)

提供音频数据流的处理框架,支持多路音频流的混合和处理。

2.2、音频编解码器(Codec)

支持多种音频格式的编解码,方便处理不同来源的音频数据。

2.3、音频流(Stream)

支持从网络、本地文件或外设获取音频数据。

2.4、音频效果(Effect)

提供音频效果处理功能,如均衡器、混音、回声消除等。

2.5、音频服务(Service)

提供高级音频服务,如语音助手集成、语音识别等。

3、应用场景

ESP-ADF 适用于多种音频应用场景,包括:

  • 智能音箱和语音助手
  • 网络音频播放器
  • 蓝牙音频设备
  • 录音设备
  • 语音识别和语音控制设备

三、安装 ESP-ADF 框架

Step1、克隆仓库源码

# git clone --recursive https://github.com/espressif/esp-adf.git
git clone --recursive https://gitee.com/EspressifSystems/esp-adf.git

执行“recursive”更新失败,是因为 github 网络问题,此时需要使用工具仓库 esp-gitee-tools,可以参照 Linux下ESP32开发环境搭建:新手也能轻松上手_esp32 linux环境搭建-CSDN博客

Step2、配置 ESP-IDF 与 ESP-ADF

cd esp-adf
./install.sh
. ./export.sh

如果在安装时,又遇到网络问题,可以把下载链接直接复制到其他软件进行下载,然后拷贝到 /home/sam/.espressif/dist/ 这个路径下,重新执行安装脚本,

这样子太麻烦了,实际上官方文档中有解决方案,

export IDF_GITHUB_ASSETS="dl.espressif.cn/github_assets"

可以看到使用了镜像地址之后下载速度一下子就提升了,

接着配置环境变量,

sudo vim ~/.bashrc 
# export ADF_PATH=/data/home/sam/MyWorkSpace/esp-adf
# export IDF_PATH=/data/home/sam/MyWorkSpace/esp-adf/esp-idf
source ~/.bashrc 

. ./export.sh

至此,环境搭建完毕。注意,这仅对当前命令窗口有效,如果新开了窗口,则需要重新执行脚本,因此我们可以为脚本导入一个别名,在 .bashrc 文件底部添加:

alias get_adf='. /data/home/sam/MyWorkSpace/esp-adf/export.sh'

四、烧录 volc_rtc 固件

1、准备工作

使用 vs code 打开 esp-adf 项目,打开路径 examples/ai_agent/volc_rtc ,

根据 README 文件的指引,需要登录火山引擎申请 token 与配置各个参数。

2、火山引擎配置

2.1、账号注册

登录网址:账号登录-火山引擎

首次注册登录需要实名认证,认证完之后直接搜索“实时音视频”,

2.2、开通“实时音视频”服务

点击“视频服务”的“实时音视频”就会跳转页面,

点击“领取礼包并开通”,

提交成功之后,点击“去控制台”,

可以看到已经创建了默认应用,直接点击“临时token”,

RoomId 与 UserId 随便填就可以,然后生成临时 Token,

把参数全部配置到 examples/ai_agent/volc_rtc/main/config.h 文件,还要配置 WIFI 账号密码,不然没法联网。

2.3、设置权限

配置“访问控制”:账号登录-火山引擎

2.4、智能体 API

智能体配置:API Explorer

使用智能体进行对话前,你需要开通 ASR、 TTS 和大模型服务并配置相关策略,详情请参看开通服务

2.5、开通 ASR/TTS 服务

ASR/TTS:账号登录-火山引擎

进入页面后,点击“创建应用”,主要选中“大模型语音合成”、“语言合成” 、“流式语音识别”,

如果需要配置音色,则需要开通服务,这里先用试用版,

AppId 与 Token 可以在底部查到:

2.6、开通 LLM 服务

大语言模型配置:账号登录-火山引擎

点击“系统管理”,注意右上角开启“免费用量 自动暂停”,然后选中其中一个模型进行开通。

可以看到已经开通成功,接着配置“在线推理”:

2.7、自定义推理接入点

选中刚刚开通的大模型,点击“确认接入”,

这里 ep 开头的就是需要获取的 EndPointId 参数值,

以上我们已经获取了启动智能体所需的所有参数,先用 Web 端测试参数是否可以正常使用,

2.8、无代码测试

弹窗中,依次检查 Step1、Step2,然后“加入 RTC 房间”,

生成临时 token 并且使用临时 token 进入房间,

接着配置智能体,

输入刚刚获取的 ep 开头的 EndPointId ,

ASR 与 TTS 配置需要在语音技术页面找到 AppId 与 Cluster,点击下方蓝色提示词就可以跳转到对应的页面了,

最后点击“开始调用”,

此时会听到豆包AI在说话就表示正常调用。

2.9、启动智能体

接下来整合参数配置、发起请求启动智能体:

"ASRConfig": {
            "Provider": "volcano",
            "ProviderParams": {
                "Mode": "smallmodel",
                "AppId": "9*******"
            }
        },

语音识别配置,这里使用小模型,只需改 AppId。

"TTSConfig": {
            "Provider": "volcano",
            "ProviderParams": {
                "app": {
                    "appid": "9*******",
                    "cluster":"volcano_tts"
                }
            }
        },

语音合成配置,这里只需改 AppId。

"LLMConfig": {
            "Mode": "ArkV3",
            "EndPointId": "ep*******",
            "MaxTokens": 1024,
            "Temperature": 0.1,
            "TopP": 0.3,
            "SystemMessages": [
                "你是小马,性格幽默又善解人意。你在表达时需简明扼要,有自己的观点。"
            ],
            "WelcomeSpeech": "你好,我是小马"
        }

大语音模型配置,这里只需改 EndPointId,角色预设与欢迎语根据自己需求修改。

配置好参数后,点击“发起调试”,可以看到已经调用成功。如果需要关闭智能体,则点第二个菜单,同样填入页面需要的参数即可。

五、编译烧录

1、自定义设备

添加 components/audio_board/esp32_s3_sparkbot,因为该硬件 codex 芯片采用 ES8311 ,因此可以参考示例中同样音频芯片的 ESP32-S3-BOX-3 设备,只需要修改对应 IO 即可,

修改 components/audio_board/CMakeLists.txt,

if (CONFIG_ESP32_S3_SPARKBOT_BOARD)
message(STATUS "Current board name is " CONFIG_ESP32_S3_SPARKBOT_BOARD)
list(APPEND COMPONENT_ADD_INCLUDEDIRS ./esp32_s3_sparkbot)
set(COMPONENT_SRCS
./esp32_s3_sparkbot/board.c
./esp32_s3_sparkbot/board_pins_config.c
)
endif()

修改 components/audio_board/Kconfig.projbuild ,

​config ESP32_S3_SPARKBOT_BOARD
    bool "ESP32-S3-SparkBot"

2、设置目标芯片

idf.py set-target esp32s3

3、配置 menuconfig

idf.py menuconfig

这里我们选中刚刚自定义的 ESP32-S3-SparkBot,

4、执行编译

 idf.py build

5、一键烧录

idf.py -p /dev/ttyACM0 flash monitor

可以看到加入房间成功,可以开始与豆包AI对话。

ESP32与豆包大模型的RTC连续对话

彩蛋:EspSparkBot 对接豆包大模型

博客链接:手把手教你玩转ESP-SPARKBOT与豆包大模型:从零到一的完整指南-CSDN博客

参考资料

### ESP32应用于大模型的案例和教程 #### ESP32连接至不同语言大模型的应用实例 ESP32作为种高效且成本低廉的微控制器,在物联网领域有着广泛应用。对于希望构建基于AI的语言处理系统的开发者来说,ESP32能够通过Wi-Fi模块轻松接入互联网,并多种云端服务对接,其中包括多个国内知名的大规模预训练语言模型。 例如,ESP32可以成功集成到阿里云推出的通义千问平台中[^1];同样地,也支持其他几个重要的中文大模型如MiniMax、智谱清言以及百度研发的文心言进行交互操作。这些项目展示了如何利用有限资源的小型设备实现复杂的人机对话功能。 #### 实际应用场景——聊天机器人 除了理论上的可能性之外,实际应用方面也有不少成功的例子。位初学者分享了自己的经验,提到使用ESP32扩展板代替传统的面包板来搭建硬件环境,不仅提高了稳定性还增强了用户体验感[^3]。该方案允许用户创建个带有显示屏的装置,能够在启动过程中展示相关信息并提供基本的文字交流能力。 #### 开发指南和技术细节 为了帮助更多有兴趣尝试这技术组合的新手们快速上手,官方提供了详细的文档和支持材料。特别是针对ESP32-CAM型号,Arduino IDE内置了个名为`CameraWebServer`的例子程序,它演示了怎样配置相机并通过网络服务器实时传输图像数据给客户端浏览器查看[^2]。虽然这主要是关于视觉方面的应用,但对于想要进步探索语音识别或者自然语言理解方向的人来说也是个很好的起点。 ```cpp // 这里是个简单的HTTP GET请求发送函数模板,用于向远程API发起调用 void sendHttpRequest(String url, String apiKey){ if (WiFi.status() == WL_CONNECTED) { HTTPClient http; http.begin(url); http.addHeader("Content-Type", "application/json"); http.addHeader("Authorization", "Bearer " + apiKey); // 添加认证信息 int httpResponseCode = http.GET(); if(httpResponseCode>0){ Serial.print("HTTP Response code: "); Serial.println(httpResponseCode); String payload = http.getString(); Serial.println(payload); }else{ Serial.print("Error on sending GET: "); Serial.println(httpResponseCode); } http.end(); } else { Serial.println("Disconnected from WiFi"); } } ``` 上述代码片段可用于建立任何RESTful API接口之间的通信链路,只需替换目标URL地址及相应的密钥即可适应不同的服务商需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

金汐脉动 | PulseTide

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值