机器学习之自然语言处理——基于TfidfVectorizer和CountVectorizer及word2vec构建词向量矩阵(代码+原理)

本文介绍了自然语言处理中构建词向量矩阵的方法,包括TfidfVectorizer、CountVectorizer和word2vec。详细阐述了TF-IDF值的计算原理,展示了sklearn中TfidfVectorizer的使用,并讨论了word2vec模型的优势与局限性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论知识准备

前期我们对分词进行了详细的讲解,那么分词之后,哪些关键词对一个文档才是重要的?比如可以通过单词出现的次数,次数越多就表示越重要。

构造文本特征向量

  • Count (文档:空格连接的字符串)

  • TFIDF (文档:空格连接的字符串)

  • Word2Vec (文档:分词列表)

TF-IDF 值

单词的TF-IDF 值可以描述一个单词对文档的重要性,TF-IDF 值越大,则越重要。

TF:全称是Term Frequency,即词频(单词出现的频率),也就是一个单词在文档中出现的次数,次数越多越重要。

计算公式:一个单词的词频TF = 单词出现的次数 / 文档中的总单词数

IDF:全称是Inverse Document Frequency,即逆向文档词频,是指一个单词在文档中的区分度。

它认为一个单词出现在的文档数越少,这个单词对该文档就越重要,就越能通过这个单词把该文档和其他文档区分开。

计算公式:一个单词的逆向文档频率 IDF = log(文档总数 / 该单词出现的文档数 + 1)

为了避免分母为0(有些单词可能不在文档中出现),所以在分母上加1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值