PCT: Point Cloud Transforme
论文地址:PCT: Point Cloud Transformer
发表于:2021年清华大学发表于CVMJ的论文
本文的主要贡献总结如下:
1、提出了一种新的基于转换器的点云学习框架PCT,该框架非常适合于非结构化、无序的不规则域点云数据。
2、提出了使用隐式拉普拉斯算子和归一化细化的偏移注意(offset-attention)?,与Transformer中的原始自注意(self-attention)模块相比,它具有固有的置换不变性,更适合点云学习。
3、大量的实验表明,具有显式局部上下文增强的PCT在形状分类、零件分割和正常估计任务上达到了最先进的性能。
难点
- 点的无序性
特点
- transformer的使用
- 局部特征的注意
introduction
相比自然语言处理的几点改进处:
-
基于坐标的输入嵌入模块
融合了原始的位置编码和输入的位置编码到基于坐标的输入嵌入模块,因为每个点的位置唯一,所以基于这个模块生成独一无二的编码特征来代表空间位置。 -
优化了的偏移注意力模块
基于原始注意力机制的优化
改进点: 从注意特征更改为注意input of self-attention module 和 attention feature之间的偏移
优势:
(1) 通过刚性变换,同一物体的绝对坐标可以完全不同。因此,相对坐标通常更具有鲁棒性【绝对坐标可以不同,相对坐标更具参考价值】
(2) 拉普拉斯矩阵(度矩阵与邻接矩阵之间的偏移