- 博客(68)
- 收藏
- 关注

原创 【推荐系统】推荐召回算法(一):双塔召回模型训练与推理(Dual Tower Model and Faiss Retrieval)
本文为推荐系统召回算法的第一篇,主要从双塔召回模型原理、网络结构、离线训练、在线Faiss索引、代码实践等方面对双塔模型召回进行描述,期待您的关注。
2025-09-04 00:21:21
1547
35

原创 【深度学习】多目标融合算法(二):底部共享多任务模型(Shared-Bottom Multi-task Model)
本文从技术原理、技术优缺点方面对推荐系统深度学习多任务多目标“Shared-Bottom Multi-task Model”算法进行讲解,该模型使用深度学习模型对多个任务场景多个目标的业务问题进行建模,使得用户在多个场景连续性行为可以被学习,在现实推荐系统业务中是比较基础的方法,后面本专栏还会陆续介绍MoE、MMoE等多任务多目标算法,期待您的关注和支持。
2025-01-09 15:08:49
3253
53

原创 【深度学习】多目标融合算法(一):样本Loss加权(Sample Loss Reweight)
本文从技术原理和技术优缺点方面对推荐系统深度学习多目标融合的“样本Loss加权”进行简要讲解,以达到对预期指标的强化,具有模型简单,成本较低的优点,但同时优化周期长、多个指标跷跷板问题也是该方法的缺点,业界针对该方法的缺点进行了一系列的升级,专栏中会逐步讲解,期待您的关注。
2024-12-31 18:31:54
2345
53

原创 【人工智能】Transformers之Pipeline(二十八):视觉问答(visual-question-answering)
本文对transformers之pipeline的视觉问答(visual-question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的视觉问答(visual-question-answering)模型。
2024-12-05 17:46:29
5126
68

原创 【人工智能】Transformers之Pipeline(二十七):蒙版生成(mask-generation)
本文对transformers之pipeline的蒙版生成(mask-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的蒙版生成(mask-generation)模型。
2024-12-02 17:08:54
5396
72

原创 【人工智能】Transformers之Pipeline(二十六):图片转文本(image-to-text/image-text-to-text)
本文对transformers之pipeline的图片转文本(image-to-text)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的图片转文本(image-to-text)模型。
2024-11-29 17:26:47
1423
50

原创 【人工智能】Transformers之Pipeline(二十五):图片特征抽取(image-feature-extraction)
本文对transformers之pipeline的图片特征抽取(image-feature-extraction)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的图片特征抽取(image-feature-extraction)模型。
2024-11-25 16:26:55
5772
62

原创 【人工智能】Transformers之Pipeline(二十四):文本特征抽取(feature-extraction)
本文对transformers之pipeline的文本特征抽取(feature-extraction)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的文本特征抽取(feature-extraction)模型。
2024-11-22 16:58:40
1116
78

原创 【人工智能】Transformers之Pipeline(二十三):文档视觉问答(document-question-answering)
本文对transformers之pipeline的文档视觉问答(document-question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用多模态中的文档视觉问答(document-question-answering)模型。
2024-11-12 19:25:08
5813
77

原创 【人工智能】Transformers之Pipeline(二十二):零样本文本分类(zero-shot-classification)
本文对transformers之pipeline的零样本文本分类(zero-shot-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的零样本文本分类(zero-shot-classification)模型。
2024-11-06 18:28:09
6360
77

原创 【人工智能】Transformers之Pipeline(二十一):翻译(translation)
本文对transformers之pipeline的翻译(translation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的翻译(translation)模型。
2024-10-24 16:30:09
1535
80

原创 【人工智能】Transformers之Pipeline(二十):令牌分类(token-classification)
本文对transformers之pipeline的令牌分类(token-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的令牌分类(token-classification)模型。
2024-10-22 15:27:30
5274
66

原创 【人工智能】Transformers之Pipeline(十九):文生文(text2text-generation)
本文对transformers之pipeline的文生文(text2text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文生文(text2text-generation)模型。
2024-09-23 19:07:33
4676
95

原创 【人工智能】Transformers之Pipeline(十八):文本生成(text-generation)
本文对transformers之pipeline的文本生成(text-generation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本生成(text-generation)模型。
2024-09-13 18:01:57
5150
116

原创 【人工智能】Transformers之Pipeline(十七):文本分类(text-classification)
本文对transformers之pipeline的文本分类(text-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的文本分类(text-classification)模型。
2024-09-11 20:34:12
5686
96

原创 【人工智能】Transformers之Pipeline(十六):表格问答(table-question-answering)
本文对transformers之pipeline的表格问答(table-question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的表格问答(table-question-answering)模型。
2024-09-10 11:47:46
3385
89

原创 【人工智能】Transformers之Pipeline(十五):总结(summarization)
本文对transformers之pipeline的总结(summarization)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的总结(summarization)模型。
2024-09-04 20:39:08
2703
104

原创 【人工智能】Transformers之Pipeline(十四):问答(question-answering)
本文对transformers之pipeline的问答(question-answering)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的问答(question-answering)模型。
2024-08-30 19:47:44
2804
96

原创 【人工智能】Transformers之Pipeline(十三):填充蒙版(fill-mask)
本文对transformers之pipeline的填充蒙版(fill-mask)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用NLP中的填充蒙版(fill-mask)模型。
2024-08-27 17:34:02
2775
105

原创 【人工智能】Transformers之Pipeline(十二):零样本物体检测(zero-shot-object-detection)
本文对transformers之pipeline的零样本物体检测(zero-shot-object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本物体检测(zero-shot-object-detection)模型。
2024-08-23 19:50:25
3492
109

原创 【人工智能】Transformers之Pipeline(十一):零样本图片分类(zero-shot-image-classification)
本文对transformers之pipeline的零样本图片分类(zero-shot-image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的零样本图片分类(zero-shot-image-classification)模型。
2024-08-20 21:42:05
3357
115

原创 【人工智能】Transformers之Pipeline(十):视频分类(video-classification)
本文对transformers之pipeline的视频分类(video-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用代码极简的代码部署计算机视觉中的视频分类(video-classification)模型,应用于视频判别场景。
2024-08-15 17:20:12
4643
123

原创 【人工智能】Transformers之Pipeline(九):物体检测(object-detection)
本文对transformers之pipeline的物体检测(object-detection)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的物体检测(object-detection)模型。
2024-08-11 13:56:14
2479
122

原创 【人工智能】Transformers之Pipeline(八):文生图/图生图(text-to-image/image-to-image)
本文对文生图/图生图(text-to-image/image-to-image)从概述、SD技术原理、SD文生图实战、模型排名等方面进行介绍,读者可以基于DiffusionPipeline使用文中的极简代码进行文生图的初步体验
2024-08-06 23:50:22
4515
130

原创 【人工智能】Transformers之Pipeline(七):图像分割(image-segmentation)
本文对transformers之pipeline的图像分割(image-segmentation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的图像分割(image-segmentation)模型。
2024-08-02 18:26:36
6080
157

原创 【人工智能】Transformers之Pipeline(六):图像分类(image-classification)
本文对transformers之pipeline的图像分类(image-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的2行代码极简的使用计算机视觉中的图像分类(image-classification)模型。
2024-07-29 20:33:45
4373
258

原创 【人工智能】Transformers之Pipeline(五):深度估计(depth-estimation)
本文对transformers之pipeline的深度估计(depth-estimation)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的使用计算机视觉中的深度估计(depth-estimation)模型,应用于3D建模、自动驾驶距离测算等。
2024-07-24 21:11:43
5740
152

原创 【人工智能】Transformers之Pipeline(四):零样本音频分类(zero-shot-audio-classification)
本文对transformers之pipeline的零样本音频分类(zero-shot-audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行零样本音频分类推理,模型目前比较冷门,但介于pipeline设计了这个task,为了完整性,还是写了这一篇。
2024-07-22 20:17:29
4635
191

原创 【人工智能】Transformers之Pipeline(三):文本转音频(text-to-audio/text-to-speech)
本文对transformers之pipeline的文本生成语音(text-to-audio/text-to-speech)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline以及tts的python和命令行工具完成文字生成语音、文字参考语音生成语音、语音参考语音生成语音,应用于有声小说、音乐创作、变音等非常广泛的场景。
2024-07-18 21:47:54
16279
251

原创 【人工智能】Transformers之Pipeline(二):自动语音识别(automatic-speech-recognition)
本文对transformers之pipeline的自动语音识别(automatic-speech-recognition)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行自动语音识别推理,应用于语音识别、字幕提取等业务场景。
2024-07-15 22:02:05
7067
127

原创 【人工智能】Transformers之Pipeline(一):音频分类(audio-classification)
本文对transformers之pipeline的音频分类(audio-classification)从概述、技术原理、pipeline参数、pipeline实战、模型排名等方面进行介绍,读者可以基于pipeline使用文中的代码极简的进行音频分类推理,应用于音频情感识别、音乐曲风判断等业务场景。
2024-07-12 22:07:10
8935
110

原创 【人工智能】Transformers之Pipeline(概述):30w+大模型极简应用
本文为transformers之pipeline专栏的第0篇,后面会以每个task为一篇,共计讲述28+个tasks的用法,通过28个tasks的pipeline使用学习,可以掌握语音、计算机视觉、自然语言处理、多模态乃至强化学习等30w+个huggingface上的开源大模型。让你成为大模型领域的专家!
2024-07-10 21:33:17
12065
256

原创 【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
Gemma 是 Google 推出的轻量级、先进的开放模型系列,采用与 Gemini 模型相同的研究成果和技术构建而成。它们是仅使用解码器的文本到文本大型语言模型(提供英语版本),为预训练变体和指令调整变体具有开放权重。Gemma 模型非常适合各种文本生成任务,包括问题解答、摘要和推理。由于它们相对较小,因此可以将其部署在资源有限的环境(如笔记本电脑、桌面设备或您自己的云基础架构)中,让更多人能够使用先进的 AI 模型,并帮助促进每个人的创新。
2024-07-04 22:52:53
7323
225

原创 【机器学习】FFmpeg+Whisper:二阶段法视频理解(video-to-text)大模型实战
本文在音频转文本的基础上,引入了视频转音频,这样可以采用二阶段法:先提取音频,再音频转文字的方法完成视频内容理解。之后可以配上LLM对视频内提取的文本进行一系列应用。
2024-07-01 20:39:26
5644
223

原创 【机器学习】Whisper:开源语音转文本(speech-to-text)大模型实战
本文是上一篇chatTTS文章的夫妻篇,既然教了大家如何将文本转语音,就一定要教大家如何将语音转成文本,这样技术体系才完整。首先简要概述了Whisper的模型原理,然后基于transformers的pipeline库2行代码实现了Whisper模型推理,希望可以帮助到大家。码字不易,如果喜欢期待您的关注+3连+投票。
2024-06-28 18:31:49
21719
241

原创 【机器学习】ChatTTS:开源文本转语音(text-to-speech)大模型天花板
本文首先以VITS为例,对TTS基本原理进行简要讲解,让大家对TTS模型有基本的认知,其次对ChatTTS模型进行step by step实战教学,个人感觉4万小时语音数据开源版本还是被阉割的很严重,可能担心合规问题吧。其次就是没有特定的角色与种子值对应关系,需要人工去归类,期待更多相关的工作诞生。
2024-06-25 01:01:00
9503
262

原创 【机器学习】GLM-4V:图片识别多模态大模型(MLLs)初探
本文首先在引言中强调了一下OpenAI兼容API的重要性,希望引起读者重视,其次介绍了GLM-4V的原理与模型结构,最后简要讲了下FastAPI以及搭配组件,并基于FastAPI封装了OpenAI兼容API的GLM-4V大模型服务端接口,并给出了客户端实现。本文内容在工作中非常实用,希望大家能有所收获并与我交流。期待您的关注+三连!
2024-06-21 01:59:57
10662
209

原创 【机器学习】阿里Qwen-VL:基于FastAPI私有化部署你的第一个AI多模态大模型
本文首先在引言中强调了一下OpenAI兼容API的重要性,希望引起读者重视,其次介绍了Qwen-VL的原理与模型结构,最后简要讲了下FastAPI以及搭配组件,并基于FastAPI封装了OpenAI兼容API的Qwen-VL大模型服务端接口,并给出了客户端实现。本文内容在工作中非常实用,希望大家能有所收获并与我交流。期待您的关注+三连
2024-06-17 23:47:08
13650
261

原创 【机器学习】QLoRA:基于PEFT亲手量化微调Qwen2大模型
本文首先对量化和微调的原理进行剖析,接着以Qwen2-7B为例,基于QLoRA、PEFT一步一步带着大家微调自己的大模型,本文参考全网peft+qlora微调教程,一步一排坑,让大家在网络环境不允许的情况下,也能丝滑的开启大模型微调之旅。
2024-06-13 19:59:15
8921
300
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人