题目链接
题目描述
给你一个下标从 0 开始的整数数组 nums
。如果 nums
中长度为 m
的子数组 s
满足以下条件,我们称它是一个 交替子数组 :
m
大于1
。s(1) = s(0) + 1
。- 下标从 0 开始的子数组
s
与数组[s(0), s(1), s(0), s(1),...,s((m-1) % 2)]
一样。也就是说,s(1) - s(0) = 1
,s(2) - s(1) = -1
,s(3) - s(2) = 1
,s(4) - s(3) = -1
,以此类推,直到s[m - 1] - s[m - 2] = (-1)(m)
。
请你返回 nums
中所有 交替 子数组中,最长的长度,如果不存在交替子数组,请你返回 -1
。
子数组是一个数组中一段连续 非空 的元素序列。
示例 1:
输入:nums = [2,3,4,3,4]
输出:4
解释:交替子数组有 [3,4] ,[3,4,3] 和 [3,4,3,4] 。最长的子数组为 [3,4,3,4] ,长度为4 。
示例 2:
输入:nums = [4,5,6]
输出:2
解释:[4,5] 和 [5,6] 是仅有的两个交替子数组。它们长度都为 2 。
提示:
2 <= nums.length <= 100
1 <= nums[i] <= 10^4
解题思路
可以设置一个增量d = ±1
来表示当前交替子数组是应该递增1
还是递减1
。初始化为d = 1
,表示交替子数组最初应该呈现上升趋势。同时初始化答案变量ans = -1
和表示当前连续交替子数组的长度的变量cur_len = 1
从下标i = 1
开始考虑所有近邻位置i
和i-1
,在一个while
循环中进行。当
nums[i] == nums[i-1] + d
时,说明nums[i]
可以延长在nums[i-1]
后面,需要- 修改增量
d
要为其原来的相反数,即1
变成-1
,-1
变成1
,d = -d
- 当连续交替子数组长度
+1
,cur_len += 1
- 更新答案,
ans = max(ans, cur_len)
- 下标
i
前进,i += 1
- 修改增量
nums[i] != nums[i-1] + d
时说明交替在此中断,重置cur_len = 1
,同时考虑d
是1
还是-1
。若- 若此时
d
为1
,说明nums[i] != nums[i-1] + 1
,即nums[i-1]
不可能作为一个新的交替子数组的起始位置,下标i
前进,i += 1
- 若此时
d
为-1
,只能说明nums[i] != nums[i-1] - 1
,但有可能出现nums[i] == nums[i-1] + 1
,即nums[i-1]
可能成为一个新的交替子数组的起始位置,重置d
为1
,i
暂时先保持不变
- 若此时
代码
Python
class Solution:
def alternatingSubarray(self, nums: List[int])