贝叶斯网络(Bayesian Network, BN)作为一种结合图论与概率统计的强大建模工具,为解决这一难题提供了新的思路。它不仅能灵活地整合多种统计模型(如回归模型、时间序列分析、机器学习方法等),还能通过有向无环图(DAG)直观地刻画变量间的因果结构,从而在数据驱动的基础上实现因果关系的推断与验证。自20世纪80年代问世以来,贝叶斯网络已在生态学、环境科学、医学、经济学和社会学等多个领域展现出广泛的应用价值,帮助研究者从复杂的观测数据中提取出可靠的因果信息。
然而,尽管贝叶斯网络具有强大的功能,其复杂的理论框架和多样化的建模方法往往让初学者望而生畏。为了帮助研究者更好地掌握这一工具,以R语言为实践平台,通过“理论讲解—案例演示—代码实现”相结合的方式,系统介绍贝叶斯网络的核心内容,包括结构学习(如何从数据中推断变量间的网络结构)、参数学习(如何量化变量间的依赖关系)以及因果推断(如何从网络中识别因果效应)。
专题一:R语言实现Bayesian Network分析的基本流程
R语言的数据类型与基本操作
R语言中图论的相关操作
贝叶斯网络的图表示与概率表示
基于bnlearn建立简单的贝叶斯网络
专题二:离散静态贝叶斯网络的构建
离散静态网络的结构学习
离散静态网络的参数估计
离散静态网络的推断
实例分析
专题三: 连续分布下的贝叶斯网络
连续贝叶斯网络的结构学习
连续贝叶斯网络的参数估计
高斯贝叶斯网络的推断
实例分析
专题四: 混合贝叶斯网络
混合分布情况下的处理
贝叶斯统计在混合网络中的应用
实例分析
专题五:动态贝叶斯网络
时间序列中变量的选择
时间相关性的处理
动态贝叶斯网络
实例分析
专题六:基于Gephi的网络作图初步
基于Gephi的网络作图初步
专题七: 真实世界中的贝叶斯网络
Bootstrap与阈值选择
模型平均方法
非齐次动态贝叶斯网络
实例分析