从理论到实践!R语言贝叶斯网络建模全解析,科研党必备!

贝叶斯网络(Bayesian Network, BN)作为一种结合图论与概率统计的强大建模工具,为解决这一难题提供了新的思路。它不仅能灵活地整合多种统计模型(如回归模型、时间序列分析、机器学习方法等),还能通过有向无环图(DAG)直观地刻画变量间的因果结构,从而在数据驱动的基础上实现因果关系的推断与验证。自20世纪80年代问世以来,贝叶斯网络已在生态学、环境科学、医学、经济学和社会学等多个领域展现出广泛的应用价值,帮助研究者从复杂的观测数据中提取出可靠的因果信息。

然而,尽管贝叶斯网络具有强大的功能,其复杂的理论框架和多样化的建模方法往往让初学者望而生畏。为了帮助研究者更好地掌握这一工具,以R语言为实践平台,通过“理论讲解—案例演示—代码实现”相结合的方式,系统介绍贝叶斯网络的核心内容,包括结构学习(如何从数据中推断变量间的网络结构)、参数学习(如何量化变量间的依赖关系)以及因果推断(如何从网络中识别因果效应)。

专题一:R语言实现Bayesian Network分析的基本流程

R语言的数据类型与基本操作

R语言中图论的相关操作

贝叶斯网络的图表示与概率表示

基于bnlearn建立简单的贝叶斯网络

专题二:离散静态贝叶斯网络的构建

离散静态网络的结构学习

离散静态网络的参数估计

离散静态网络的推断

实例分析

专题三: 连续分布下的贝叶斯网络

连续贝叶斯网络的结构学习

连续贝叶斯网络的参数估计

高斯贝叶斯网络的推断

实例分析

专题四: 混合贝叶斯网络

混合分布情况下的处理

贝叶斯统计在混合网络中的应用

实例分析

专题五:动态贝叶斯网络

时间序列中变量的选择

时间相关性的处理

动态贝叶斯网络

实例分析

专题六:基于Gephi的网络作图初步

基于Gephi的网络作图初步

专题七: 真实世界中的贝叶斯网络

Bootstrap与阈值选择

模型平均方法

非齐次动态贝叶斯网络

实例分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值