SFFAI 81 @ ICT报名通知 | 机器学习硬件专题

本次论坛聚焦机器学习硬件专题,探讨如何利用阻变存储器(ReRAM)解决AI算力瓶颈。何银涛博士将分享其在基于ReRAM的状态感知神经网络加速器设计的研究,提出了一种降低ReRAM计算阵列功耗的优化方法,通过状态感知算法与硬件协同,实现在保持模型准确率的同时,显著降低计算功耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论坛主题

机器学习硬件专题

论坛简介

达摩院2020年十大科技趋势白皮书指出,计算存储一体化方案可以突破AI算力瓶颈。通过将存储和计算单元融合为一体,该方案可以显著减少数据搬运,极大提高计算并行度和能效。阻变存储器(ReRAM)作为一种存内计算方案,在实现高能效神经网络计算系统方面具有重要前景。本期论坛我们邀请到了来自中科院计算技术研究所的何银涛同学,分享她在基于ReRAM的状态感知神经网络加速器设计方面的工作。

论坛讲者

何银涛

何银涛,中科院计算所计算机体系结构国家重点实验室直博二年级。主要研究方向为存内计算、高能效神经网络加速器设计,曾在计算机系统结构会议DAC、ICCAD上发表一作论文。

报告题目:面向状态感知的ReRAM神经网络计算方法

报告摘要:随着神经网络模型参数量不断增加,传统的冯诺依曼计算架构受限于数据搬运瓶颈,逐渐难以满足数据驱动的人工智能应用需求。阻变存储器(ReRAM)作为一种存内计算方案,在实现高能效神经网络计算系统方面具有重要前景。随着映射到ReRAM的神经网络参数大幅增加,计算开销同样会急剧增长。其中,ReRAM计算阵列功耗占整体的重要部分。因此,针对ReRAM计算阵列上的功耗优化问题,我们提出了一种状态感知算法与硬件的协同优化,包括:一种基于ReRAM的权重状态感知神经网络加速器和低功耗神经网络状态感知模型训练方法。实验表明,在保证神经网络准确率的前提下,该方法大幅降低了ReRAM阵列的计算功耗。

Spotlight:

  1. 本文利用ReRAM的阻值状态与读电流的关系,提出了一种基于ReRAM的状态感知神经网络加速器设计;

  2. 提出了一种低功耗神经网络状态感知模型训练方法,进一步降低计算功耗;

  3. 实验结果表明,本方法能有效降低ReRAM计算开销,且具有可扩展性,同时适用于高精度的神经网络。

召集人

樊海爽

樊海爽,中国科学院计算技术研究所直博生,导师为鄢贵海研究员。主要研究方向为专用处理器技术与智能计算。

论文推荐

“ 本期推荐的文章主要关注于机器学习领域,你可以认真阅读讲者推荐的论文,来与讲者及同行线上交流哦。

关注文章公众号

回复"SFFAI81"获取本主题精选论文

经典论文

01

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值