【活动通知】SFFAI98×CRIPAC 模型架构设计专题

SFFAI与CRIPAC联合举办的活动中,清华大学的丁霄汉介绍了RepVGG,这是一种通过结构重参数化的VGG式单路卷积网络,实现了简单、快速且高性能的架构。该模型在不使用NAS、attention或其他复杂组件的情况下,仅依靠3x3卷积和ReLU,达到了SOTA性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SFFAI 合作机构 CRIPAC 简介

智能感知与计算研究中心(www.cripac.ia.ac.cn)为中科院自动化研究所独立建制的科研部门,致力于研究泛在智能感知理论与技术以及与之相伴的海量感知数据的智能分析与处理。瞄准国际学科前沿,面向国家公共安全、智能产业发展等重大战略需求,着眼于基础理论创新与关键技术突破以及系统解决方案的研制,努力打造成为国际一流的研究中心,是集人才培养、技术创新、产业孵化为一体的创新平台。中心目前主要在多模态智能计算、生物识别与安全、生物启发的智能计算、智能感知基础理论四个方面展开科学研究。

会议内容

会议简介

如何设计一个高性能且实用的网络架构是一项有趣且有重大意义的研究问题。本期我们邀请到了来自清华大学的丁霄汉同学,介绍他设计的一种VGG式单路极简卷积网络架构,这种架构实现简单、速度快、性能高,可以仅通过堆加数个卷积层就实现原有模型的精度提升。

讲者介绍

丁霄汉,清华大学在读博士生,导师为丁贵广副教授。主要研究方向为卷积神经网络的设计与优化。曾在CVPR,ICML,ICCV,NeurIPS等会议上作为第一作者发表论文5篇。曾获2019年百度奖学金。RepVGG是在旷视科技实习期间和张祥雨博士等人合作的工作。

会议题目

RepVGG:让VGG式极简卷积网络Great Again

会议摘要

我们提出一种VGG式单路极简卷积网络架构,一路3x3卷到底,在速度和性能上达到SOTA水平,在ImageNet上超过80%正确率。这一架构是用“结构重参数化”方法实现的,训练时模型具有多分支结构,训练完成后等价转换为单路3x3卷积架构。

会议亮点

1、提出的是一种极其简单、非常实用、速度快、性能高的通用卷积神经网络架构;

2、不用NAS,不用attention,不用各种新颖的激活函数,甚至不用分支结构,只用3x3卷积和ReLU,也能达到SOTA性能;

3、“结构重参数化”方法的实现非常简单,写成代码不过三十行。

直播时间

2021年1月24日(周日)20:00-21:00  线上直播

关注本公众号,对话框回复“SFFAI98”,获取入群二维码

注:直播地址会分享在交流群内

论文推荐

“ 《SFFAI 98期—模型架构设计专题》来自来自清华大学的丁霄汉同学推荐的文章主要关注于模型架构设计领域,你可以认真阅读讲者推荐的论文,来与讲者及同行线上交流哦。

关注文章公众号

回复"SFFAI98"获取本主题精选论文

经典论文

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值