反常积分(Anomalous Integrals)

本文深入探讨了反常积分的概念,包括收敛和发散的判断条件、瑕积分的两种类型,以及比较判别法、极限比较法和p判别法的应用。通过实例解析了如何利用这些方法分析函数的敛散性,适用于计算机科学与信息技术专业人士。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20.反常积分

20.1 收敛和发散



出现反常积分的三种情况

破裂点(瑕点)

反常积分大致图像示意

有限( ε \varepsilon ε)逼近无限(左边界 a a a)
ε \varepsilon ε 越小,对这块无限区域的估算就越接近于实际值

20.1.1 反常积分的例子


上述反常积分发散
1 x \frac{1}{x} x1 的图像并没有那么接近于 y y y 轴,所以它对应的积分是发散的


上述反常积分收敛
1 x \frac{1}{\sqrt{x}} x 1 的图像足够接近于 y y y 轴,以至于它对应的积分是收敛的

一个反常积分在有界区间的收敛或发散是由它的被积函数在非常接近破裂点时的走势决定的

此种情况中积分上限的值不影响判断反常积分发散或收敛

20.1.2 其他破裂点(瑕点)

函数在积分上限是无界的

函数在区间 [ a , b ] [a,b] [a,b]内有破裂点(瑕点)c

∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx

分成两部分

当下面两部分同时收敛时,积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx才收敛
如果任何一个发散,则积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx发散

20.2 瑕积分

20.2.1 瑕积分类型一

积分上下限有一个无穷时的情况


只要不选择新瑕点,那么 a a a值对广义积分(反常积分)的收敛还是发散就没有任何影响。仅仅需要考虑的是当 x x x 非常大时,函数的走势怎样

例1:


积分上下限同时是无穷时的情况


拆分成两部分,让每一部分只有一个瑕点

例1:

例2:

例3:

20.2.2 瑕积分类型二


例1:

例2:

20.3 比较判别法(理论)

比较判别法是用一个函数的反常积分的结果去判别另一个函数的反常积分

20.3.1 关于发散性


如果在区间 ( a , b ) (a,b) (a,b)内,函数 f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)g(x)且积分 ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx是发散的,那么积分 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx也是发散的


如果 f ( x ) ≤ g ( x ) f(x)\leq g(x) f(x)g(x),积分 ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx是发散的,那么积分 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx可能发散、可能收敛

20.3.2 关于收敛性

如果在区间 ( a , b ) (a,b) (a,b)内有 0 ≤ f ( x ) ≤ g ( x ) 0\leq f(x) \leq g(x) 0f(x)g(x),且积分 ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx是收敛的,那么积分 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx也一定是收敛的

想要求的面积( ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx)是正的并小于一个有限的面积( ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx),所以 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx是有限的

如果 f ( x ) ≥ g ( x ) f(x)\geq g(x) f(x)g(x),积分 ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx是收敛的,那么积分 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx可能发散、可能收敛

20.4 极限比较判别法(理论)

假设有两个函数在破裂点 x = a x=a x=a 是非常接近的(无其他破裂点)那么积分 ∫ b a f ( x ) d x \int_b^af(x)dx baf(x)dx ∫ b a g ( x ) d x \int_b^ag(x)dx bag(x)dx同时收敛或同时发散

极限比较判别法的重点是:能找到一个和被积函数在瑕点附近敛散性一致的函数

20.4.1 函数互为渐近线

因为比值接近于1,所以 f ( x ) f(x) f(x) 非常接近于 g ( x ) g(x) g(x)
这并不意味着 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的差是非常小的
例如:
f ( x ) f(x) f(x)为万亿,而 g ( x ) g(x) g(x)为万亿+一百万
f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x)非常小,但 g ( x ) − f ( x ) g(x)-f(x) g(x)f(x)却为一百万


并不说明当 x x x 接近于 a a a 时, f ( x ) f(x) f(x)大约等于 g ( x ) g(x) g(x)
它说明当 x x x 接近于 a a a 时, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 的比值接近于 1 1 1
也就是说,当 x → a x\rightarrow a xa,函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)渐进等价

例子:

渐进等价是极限的另一种书写形式

两个渐进等价的函数可以进行相除或相乘、幂运算,但不能进行加或减

例子:

判别法的应用

20.5 p判别法(理论)

使用比较判别法和极限比较判别法时,需要选择一个能与函数 f f f 相比较的函数 g g g,这个函数 g g g 最常用的是 1 x p \frac{1}{x^p} xp1



20.6 绝对收敛判别法

比较判别法的一个假设是函数 f f f g g g 都是非负的
如果函数是负的或在积分区间不停地正负振荡,应使用绝对收敛判别法

只有当积分的绝对值情况是收敛的,才能使用绝对收敛判别法


例1:

例2:

<think>嗯,用户问的是关于WannierTools计算反常霍尔效应的事情。首先,我需要确认自己对WannierTools的了解程度。WannierTools是基于Wannier函数的第一性原理计算软件,主要用于拓扑材料的电子结构计算和拓扑性质分析。反常霍尔效应则是材料在无外磁场情况下出现的霍尔效应,通常与材料的贝里曲率有关。 接下来,用户可能需要知道如何使用WannierTools来计算反常霍尔电导率。首先,我应该回顾一下计算反常霍尔效应的基本步骤。通常需要先通过DFT计算得到材料的电子结构,然后用Wannier90生成紧束缚模型,再在WannierTools中进行后续计算。贝里曲率的计算是关键,可能涉及到Kubo公式或者Berry phase的方法。 然后,要确保提到的步骤符合用户的需求。用户可能希望了解整个流程,包括准备输入文件、参数设置、运行计算以及结果分析。需要指出关键参数,比如k点网格的密度,因为这会影响到计算的准确性。同时,可能需要提到常见的输出文件,比如霍尔电导率的数值。 另外,用户可能对理论背景不太熟悉,所以需要简要解释反常霍尔效应的物理机制,比如内禀机制和贝里曲率的关系。不过要注意不要过于深入,保持简洁。还要注意使用正确的中文术语,避免翻译错误。 还要检查是否有遗漏的步骤,例如是否需要考虑自旋轨道耦合(SOC)效应,这在反常霍尔效应中通常是必须的。同时,可能需要提醒用户确保Wannier函数的局域性良好,否则计算结果可能不准确。 最后,要确保回答结构清晰,分步骤说明,可能用项目符号列出流程和注意事项。避免使用Markdown格式,但保持段落分明。另外,用户可能需要知道如何验证结果的正确性,比如与文献对比或者检查收敛性。</think>WannierTools 是一款基于紧束缚模型的计算软件,主要用于研究拓扑材料的电子结构和物理性质(如拓扑不变量、表面态、输运性质等)。在反常霍尔效应(Anomalous Hall Effect, AHE)的计算中,WannierTools 通过贝里曲率(Berry Curvature)的积分来求解霍尔电导率。以下是关键步骤和原理的逐步说明: --- ### **1. 理论基础** 反常霍尔电导率($\sigma_{xy}$)由贝里曲率在布里渊区的积分给出: $$ \sigma_{xy} = -\frac{e^2}{\hbar} \sum_n \int_{\text{BZ}} \frac{d^2k}{(2\pi)^2} \Omega_{n,z}(\mathbf{k}) f_n(\mathbf{k}) $$ 其中: - $\Omega_{n,z}(\mathbf{k})$ 是第 $n$ 条能带的贝里曲率 $z$ 分量, - $f_n(\mathbf{k})$ 是费米-狄拉克分布函数。 --- ### **2. 计算流程** #### **(1) 输入准备** - **Wannier 模型**:通过 Wannier90 生成材料的紧束缚模型(`hr.dat` 文件),需包含自旋轨道耦合(SOC)效应。 - **控制文件**:设置 `wt.in` 文件,指定计算参数: ```bash Hall_conductivity ! 开启霍尔电导计算 kpath_berry ! 贝里曲率计算模式 NumOccupied ! 占据态数目(需根据体系电子数确定) ``` #### **(2) 关键参数** - **k 点网格**:通过 `KCube` 定义布里渊区积分的 k 点密度(如 `KCube = 100 100 1`),密度越高结果越精确。 - **费米面调节**:调整 `E_fermi` 至目标化学势附近,或通过 `E_loop` 扫描能量范围。 #### **(3) 运行计算** 执行命令: ```bash wt.x wt.in ``` 程序将自动计算布里渊区内所有 k 点的贝里曲率,并积分得到 $\sigma_{xy}$。 #### **(4) 结果分析** - **输出文件**:`Hall.dat` 包含反常霍尔电导率 $\sigma_{xy}$ 的数值(单位:$e^2/h$)。 - **收敛性检查**:需验证不同 k 点密度下的结果是否稳定。 --- ### **3. 注意事项** 1. **自旋轨道耦合**:必须包含 SOC,否则贝里曲率为零。 2. **Wannier 局域性**:若 Wannier 函数局域性差,紧束缚模型可能不准确,需优化投影轨道。 3. **对称性限制**:某些对称操作(如时间反演)会导致 $\sigma_{xy}=0$,需确认材料对称性。 --- ### **4. 扩展应用** - **量子反常霍尔效应**:通过调节化学势至拓扑非平庸能隙中,可得到量子化的 $\sigma_{xy}$。 - **非线性霍尔效应**:WannierTools 也支持高阶贝里曲率的计算。 如需具体案例,可参考 WannierTools 官方文档或相关文献(如 Dirac/Weyl 半金属体系)。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值