对角矩阵的压缩存储
首先介绍一下对角矩阵:对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,…,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;
1,当带宽b=1时
只有一条带子,像上面那个图一样,第一行(列)最后一行(列)都只有两个元素,
按照行存储 也就是一行一行的存储
a[i][j]=2+(i-1)*3+(j-(i-b))
a[i][j]=2i+j
2,当b不等于1.且b小于n/2
行排序
a[i][j]=1+b+(i-1)(b+2)+ (j-(i-b))=k
列排序
a[i][j]=1+b+(j-1)(b+2)+(i-(j-b))=k