- 博客(214)
- 收藏
- 关注
原创 基于Python的实习僧招聘数据采集与可视化分析,使用matplotlib进行可视化
公司规模信息存储在 company_tip 列中,使用正则表达式提取类似“150-500人”或“2000人以上”的模式,将其存储在新列 company_scale 中,继续使用正则表达式,提取 company_tip 列中的非规模信息。接着,使用数据分析库(如 pandas)进行薪资数据的清洗和转换,将薪资范围的字符串数据(如“8-10k”)转化为数值数据,可以通过提取数值的中位数或范围的下限来进行转换。图中的标签位置和大小由生成的频次数据控制,使得常见标签更加突出,从而清晰地展示出岗位福利的热门关键词。
2025-08-07 22:21:01
1281
原创 基于django的非物质文化遗产可视化网站设计与实现
此外,邓铭的研究关注了非遗数字平台的可持续发展,提出了结合大数据和人工智能技术,对非遗项目进行智能化管理和分析的方法,帮助非遗保护工作者实时监控非遗项目的状况并作出相应调整。用户需求分析与功能设计:为满足不同用户群体(如文化爱好者、研究人员等)的需求,设计用户友好的功能模块,包括用户注册与登录、浏览非遗项目、搜索功能、发布内容、评论互动和上传图片等,增强用户的参与感和文化体验。通过清晰的角色划分和功能设计,确保用户和管理员可以在平台上进行各自所需的操作,提供良好的互动体验和高效的内容管理。
2025-08-07 22:14:23
649
原创 基于可视化分析的房地产市场监测与预警机制,展示二手房的价格趋势、区域分布、户型结构等关键信息
网络爬虫(Web Crawler),也称为网络蜘蛛(Web Spider),是一种在网络上自动地爬取信息的程序,主要作用是在大量的数据中按一定规则进行爬取和存储。其详细处理流程如图:2-1所示。图2-1 爬虫流程图。
2025-08-06 21:12:38
838
原创 基于跨境电商场景的智能商品管理系统,采用Bootstrap+Django+MySQL技术架构,实现用户行为追踪、智能推荐、多维度商品展示等核心功能
本研究旨在通过对该免税城购物平台上彩妆类商品的数据进行深入研究,挖掘消费者行为模式、偏好趋势等有价值信息,为优化平台商品展示、精准营销、库存管理等提供数据支持,从而提升消费者购物体验,提高平台运营效率和销售额。通过运用前沿的数据分析技术,深入挖掘消费者对彩妆产品的需求偏好和行为模式,为平台优化商品展示、精准营销以及库存管理等提供有力支持,从而为用户提供更优质、个性化的服务。描述了用于展示浏览最多的商品列表,用户可以通过该页面查看商品的浏览量、基本信息(如名称、商家、价格、描述等)以及与浏览相关的数据。
2025-08-06 21:00:42
1279
原创 基于python的二手车价格预测及可视化系统,采用集成学习算法和diango框架
对于二手车市场数据分析与可视化系统,需要添加所需要的数据信息,对于添加信息,需要管理员进入添加界面,根据选框的内容进行填写所要添加的数据信息,信息输入完成后判断数据信息是否符合要求,符合要求则添加完成,管理员所添加的信息不符合要求,则需要返回到第一步,重新输入数据信息,再进行判断操作,如图4.4所示。上牌时间分析柱形图实现类似,数据源为按年份分组的licenseDate字段,视图层使用annotate聚合,前端通过option.xAxis.data绑定年份列表,series.data绑定对应数量。
2025-08-05 21:53:33
1409
原创 基于LDA主题的网络舆情与情感分析——以云南某景区话题为例
根据舆情生命周期理论构建舆情情感和主题的时序演化,对不同时期的评论分别进行K-means聚类,结合轮廓系数确定最优聚类数,识别不同情感群体关注的核心议题(如“救援效率争议”“景区管理漏洞”“公众同理心表达”等),创建不同时期关联网络的可视化,揭示舆情传播的关键节点与情绪扩散路径,最后采用LDA主题模型挖掘舆情主题,按事件阶段(萌芽期、爆发期、消退期)分别建模,通过困惑度指标确定各阶段最优主题数。核心议题(主题0、1、4)与边缘话题(主题2、3)并存,显示消退期舆情“理性沉淀与猎奇残留”的双重性。
2025-08-05 21:41:48
1197
原创 基于决策树的熬夜人群数据分析与可视化设计与实现
(3)可视化对决策树进行决策,能提高大众的健康素养,提升大众对身体健康规律的认识,提高大众对改善自身生活习惯重要性的认知度,改观大众对于熬夜情况的认识,提高大众生活质量。随着熬夜的常见性和常态化,对熬夜的研究也就显得尤为必要。使用MinMaxScaler的transform和fit_transform函数将选取的特征缩放到[0,1]范围内,首先实例化MinMaxScaler()类,并给出变换后特征的输出范围,读取数据框的第2列以后的所有数值特征(如果数据框中第一列为非数值特征,如ID)归一化后的结果如图。
2025-08-04 20:06:23
834
原创 基于机器学习的二手房信息可视化及价格预测系统设计与实现
该页面实现基于决策树算法的房价预测功能,前端通过LayUI表单收集12项特征参数:楼层等级(高/中/低)、电梯有无、地铁有无、住宅类型(板楼/塔楼等)、装修等级(毛坯至豪华)、房屋朝向、楼层数、厅室数量、面积、关注人数。其中二手房数据采集功能,爬虫程序从安居客平台抓取房源信息,包含ID、房源名称、小区、地址、房价等字段。平台管理员、平台用户选择不同的条件筛选,如二手房房源不同地区城市、二手房的标题、小区名称、建造时间、二手房房子的标签、ID等信息,让其筛选出某个区域、城市、房价的情况,辅助用户做相关决策。
2025-08-04 19:58:52
993
原创 基于机器学习的Web应用漏洞分析与预测系统,使用django框架,三种机器学习模型
按照年份分组获取不同年份的漏洞个数分组命令是groupby(df,“发布时间”),“发布时间”指年份,获得的结果是一个Series对象,通过map和values函数可以获取years列中的所有元素,结果是['2017','2018',‘2019’],对应的漏洞的个数可以通过count()方法获取,结果分别是['46',‘45’,‘64'],通过传递render将数据传递给salary.html模板,在该模板中可以使用这些数据绘制柱状图进行可视化分析。以柱状图的形式展示这些数据,用户便于对模型效果进行对比。
2025-08-03 22:53:12
1064
原创 基于时间序列算法的超市商品销量的分析与预测系统,采用django+echarts+ARIMA+LSTM算法
随机波动是时间序列中不可避免的一部分。表5-6的结果也显示,LSTM模型的MSE和MAE都远小于单个的ARIMA模型,说明ARIMA和LSTM的模型的拟合效果优秀。对模型进行训练,可视化训练集数据如图5-5,发现拟合效果并不是特别的好,上升趋势拟合效果不错,但是季节性的拟合效果不太理想,再将ARIMA预测得到一阶差分可视化如图5-6,同样的拟合效果一般,将拟合出来的一阶差分数据经过累加,转换到测试集数据,将测试集数据与预测数据可视化,得到图5-7,在训练集当中的问题在测试集更明显,季节性并没有很好的拟合。
2025-08-03 22:42:21
1122
原创 python高分毕设作品:基于python django的交通流量可视化分析预测系统设计,采用深度学习模型(LSTM和GRU),实现车流量预测,准确率接近95%
2.1.1 开发工具系统的设计与实现使用了多个开发工具,其中包括:MySQL:能存储和管理数据,对web系统中实现数据的增删改查,并为可视化提供数据支持,起到数据引擎的作用。PyCharm:具有较高的Python代码开发和调试效率,强大的整合能力,把不同的库整合在一起,支持定位跟踪错误,方便开发人员快速处理问题。这些开发工具的使用,系统设计、开发更加快捷和方便,对系统进行分析、呈现等。
2025-08-01 20:01:07
784
原创 基于机器学习的健身房会员健康风险分析可视化系统,flask框架,随机森林模型实现预测
最终,实现健康风险的可视化结果(不同健康风险会员的比例、会员健康风险的变化趋势、模型预测准确度的评估),以图表方式展示不同健身会员的健康风险分布结果、各健康风险等级的范围、风险趋势分析结果(比例分布图、数据统计表),以满足健身房高、中、低健康风险用户特征提取及分类的需求,同时根据平台预测的健康风险模型结论和建议对会员进行个性化训练与指导计划提供反馈,从而在健身房管理人员的指导下,为健康风险较高的用户提供合理的干预或治疗措施以预防疾病发生,帮助健身房进行健康风险的精准化和个性化管理,提升健身房自身运营效率。
2025-08-01 19:46:42
835
原创 基于京东评论的文本挖掘与分析,使用LSTM情感分析算法以及网络语义分析
每个关键词作为网络中的节点,其频率决定节点的大小。服务与性价比影响决策:服务维度,“客服”(2878次)、“物流”(1866次)、“售后”(591次)等词显示用户对售前咨询、配送效率及售后支持的关注,而“性价比”(1891次)、“价格”(1607次)、“赠品”(702次)则表明价格敏感度较高,需平衡产品价值与成本。应用TruncatedSVD(即潜在语义分析,LSA)降维技术,将高维的词频矩阵压缩到较低的维度(最多1000个特征),并通过Normalizer进行标准化,以便更好地捕捉词汇之间的语义关系。
2025-07-31 12:39:56
624
原创 python毕设案例:基于机器学习的民宿价格预测分析与研究,技术使用django+随机森林算法/多元线性回归算法+echarts可视化
此方法能够高效抓取并存储多个页面的酒店信息,最后通过使用navicat数据库可视化工具导入的方式,将采集好的数据手动导入到数据库,如图4.1所示数据采集流程,图4.2所示导入的数据库信息,如表4.1所示数据存入数据库的表结构。对于系统的安全性的第一关,就是用户想要进入系统,必须通过登录窗口,输入自己的登录信息才可以进行登录,用户输入的信息准确无误后才可以进入到操作系统界面,进行功能模块的相对应操作,如果用户输入的信息不正确,则窗囗出现提示框,用户登录失败,返回到第一步进行重新输入,如图5.3所示。
2025-07-31 12:34:16
1081
原创 python案例分析:基于抖音评论的文本分析,使用svm算法进行情感分析以及LDA主题分析,准确率接近90%
优化"美食+景点"动线设计,减少"可惜"类时间损耗。体验细节好评突出(主题3,占比10.7%):"好吃""惊喜"直指餐饮体验超出预期,"金箍""金桥"等特色地标关联"值得"关键词,体现文旅消费场景精细化运营成效。节假日管理痛点(主题2,占比9.9%):"五一""假期"与"游客""确实"的关联,反映高峰期接待能力不足。
2025-07-30 23:12:25
794
原创 python毕设高分案例:基于机器学习的抑郁症数据分析与预测系统,flask框架,算法包括XGboost模型、梯度提升树模型等
传统的数据处理和分析方法在面对如此庞大且复杂的医学数据时,显得力不从心。医生难以从海量数据中快速提取关键信息,导致诊断效率低下,也可能遗漏重要线索影响诊断准确性。同时,医院管理者在进行资源配置决策时,缺乏直观有效的数据支持,难以合理分配有限的医疗资源,造成资源浪费或短缺。大数据可视化技术的出现为解决这些问题提供了新的契机。它能将抽象、复杂的数据转化为直观易懂的图表、图形或地图等可视化形式,让医生和管理者能够更清晰地洞察数据背后的规律和趋势。
2025-07-30 23:03:47
806
原创 python案例:基于python 神经网络cnn和LDA主题分析的旅游景点满意度分析
随着旅游业的快速发展,满意度分析成为评估旅游景点质量和提升游客体验的重要手段。作为中国的旅游城市之一,其旅游景点吸引了大量游客。然而,如何科学评估和提升旅游景点的满意度,成为当前旅游管理和发展中的重要问题。传统的满意度分析方法主要依赖于人工调查和统计分析,这种方法存在着调查样本有限、统计结果不够客观等问题。因此,基于自然语言处理技术的情感分析成为了一种新的研究方法,能够从大量的网络评论中挖掘出游客的情感倾向,对景点的满意度进行客观评估。同时,利用先进的技术如 CNN 算法、LDA 主题模型和 jieba 分
2025-07-29 21:10:05
938
原创 python优秀案例:基于机器学习算法的景区旅游评论数据分析与可视化系统,技术使用django+lstm算法+朴素贝叶斯算法+echarts可视化
1 绪论1.1 研究背景中国旅游经济随着全球旅游业发展走出了新的道路,张家界的国家森林公园作为中国第一个被联合国教科文组织评审通过的世界自然遗产地、国家5A级旅游景区是吸引海内外游客旅游休闲和文化消费的热点地区。互联网和社交媒体的普及和应用使得旅游者发布的大量旅游评论的产生,他们以非结构化、非正式的信息形式记录了人们对旅游景区中服务、景观、设施、文化等方面的主观反应,具有重要的旅游体验价值,可以帮助分析和解决游客提出的管理需求,改善管理条件[1]。
2025-07-29 19:59:54
2835
1
原创 python案例分析:基于新能源汽车论坛评价数据情感分析的客户满意度研究,文本挖掘包括lda主题分析和词频分析、情感分析、网络语义分析
(一)研究背景越来越多的消费者将新能源汽车(NEV)选作一种绿色、环保、节能的交通方式,近年来尤其是在中国市场呈现爆发式增长,比亚迪、特斯拉、蔚来、华为、小米等新能源汽车品牌应运而生,随着市场的逐渐成熟,激烈的市场竞争环境,不断增长和细分的消费群体,对于NEV品牌而言,了解及改善消费者满意度是一个迫切需要解决的问题。顾客满意度是指顾客对产品或服务的综合满意程度,电动汽车顾客的满意度除了受产品本身的性能影响之外,也受电动汽车售后服务、品牌、智能功能等方面的影响,消费者的真实需求往往体现在各种媒体上的意见表达和
2025-07-28 21:47:04
1098
原创 python毕业设计案例:基于python django的抖音数据分析与可视化系统,可视化有echarts,算法包括lstm+朴素贝叶斯算法
数据采集流程图如图4.1所示。近年来,短视频平台的迅猛发展催生了大量用户生成内容,抖音作为行业领先的短视频平台,积累了海量用户数据。预测模块的流程主要分为数据准备、模型训练、预测生成3步,从数据库中准备数据,作为分析的基础,使用LSTM算法训练数据,并经过数据的预处理、词向量转换等方法,划分数据集和训练集进行训练,训练好的模型进行保存。用户信息E-R图如图4.5所示,E-R图描述了“用户”实体及其相关属性,包括:ID、账号、密码、头像、姓名、性别、手机号和年龄,用于表示系统中用户的基本信息结构。
2025-07-28 21:24:07
1412
1
原创 python优秀案例:基于python flask实现的小说文本数据分析与挖掘系统,包括K-means聚类算法和LDA主题分析
摘 要本系统基于Python Flask框架开发,旨在实现小说数据的采集、分析与可视化,主要从七猫小说网站获取数据,并通过ECharts进行可视化展示,MySQL用于数据存储。系统主要功能包括小说类型分布分析、更新时间分布分析、文本挖掘和评分分布分析。1 绪论1.1 研究背景随着互联网技术的飞速发展,数字化转型已逐渐渗透到各行各业,尤其在文化产业中产生了深远的影响。互联网和移动应用的普及,使得小说阅读逐渐从传统的纸质书籍向数字平台迁移,数字阅读已成为现代读者获取小说的重要方式。各类在线小说平台的兴起
2025-07-27 22:38:49
2488
原创 python毕设:基于Python的微博数据分析系统设计与实现,技术包括flask+boostrap+svm/dnn算法+echarts可视化
显示用户的预测结果,显示预测得到的用户输入的热词、所选模型名称和预测出的情感倾向(例如:正面的、负面的、中性的、);微博数据是指伴随着现代社会科学技术的进步和社会的发展而兴起的一种影响公众和影响社会稳定的关键性因素,网络热点的爆发和传播在于现代社会科技的飞速发展和网络的普及,社交媒体是网络信息快速的传播以及网络传播的巨大影响力在传播并影响众多的大众,短时间内得到广泛地传播,这使得网络热点对社会舆论的社会变化和方向的引导作用发挥巨大影响,尤其在突发事件热点话题是影响了广大群众的行为和言论[1]。
2025-07-27 22:27:01
1133
原创 毕设案例:基于python django的商品销售系统的设计与实现,包括前端和后端,有协同过滤算法,后端有增删改查和数据分析
1.1 研究背景随着全球化电商的蓬勃发展,全球电子商务带动了消费者对网上购物的需求持续增长,并且对于免税商品的消费需求呈现出强劲的发展态势。免税商品具有的价格优势和品质追求,正好符合了当下广大消费者追求高品质商品生活的要求。1.2 研究意义基于Python的免税网购系统具有很大的现实意义,为人们的网上购物方式提供了一个更新颖的购物体验,消费者无法直接线下购买自己所需商品时,可在系统上购买到琳琅满目的免税产品,满足日益增长的消费需求,为免税销售商提供强大的管理库存、规划策略的方式。
2025-07-25 20:15:47
948
原创 优秀案例:基于python django的智能家居销售数据采集和分析系统设计与实现,使用混合推荐算法和LSTM算法情感分析
应用协同过滤与内容推荐的融合推荐算法,实现基于用户行为、商品属性等的商品推荐功能,使系统能更好地推荐商品,真正实现商品内容的推荐。本文所研究设计的智能家居销售数据采集与分析系统主要是为了提升数据的采集效率,并且实现及时采集到的线上电商平台及线下店面的多重渠道销售数据的采集与分析,精确地进行相关的数据采集并应用先进的数据挖掘算法进行分析挖掘,取得数据中潜藏的数据价值信息,例如一些数据分析所形成的销售趋势预测结果以及一些相应的消费者画像结果等,并在后续的应用中针对企业的智能家居能够取得促进发展的目的。
2025-07-25 19:54:23
1917
原创 基于python django的农业可视化系统,以奶牛牧场为例
国内学者研究涉及畜牧行业智能化发展和畜牧业可持续发展,以精准化的饲喂机械研发和动物营养饲喂的种养技术模式创新为例,依托自动化降低肉牛种养规模化作业的个体性,优化畜舍环境控制技术节省资源能源消耗,但存在粪污资源化处置技术以及种养业功能紧密耦合对接问题等制约,同时研究方法以技术综合集成研究和案例实证研究为主,注重实用技术的运用,但依然存在单一渠道的数据收集,缺乏评估精准技术依托,导致研究数据搜集的维度单一,数据分析的精细度和预测的准确性不高。
2025-07-24 21:30:47
1094
原创 毕业设计:基于python flask的出租车运营数据可视化分析系统
本系统基于Python Flask框架构建了一套出租车运营数据可视化分析平台,整合Bootstrap前端框架、ECharts可视化组件和MySQL数据库,实现了多维度的出租车业务数据洞察。系统通过Flask后端高效处理数据查询与接口响应,采用Bootstrap实现响应式页面布局,结合ECharts丰富的图表类型进行动态数据展示,MySQL数据库稳定存储结构化业务数据。核心功能模块包含:1)小费与行程距离散点图分析,揭示小费支付与行驶距离的关联规律;2)支付方式环形图直观呈现信用卡/现金等支付渠道占比;3)费
2025-07-24 20:28:14
553
原创 基于python的微博评论和博文文本分析,包括LDA+聚类+词频分析+lstm热度预测,数据量10000条
特征融合与聚类的实现通过整合多种技术对文本数据进行深度处理和分析,具体包括以下步骤:首先,进行文本预处理和分词,将原始评论数据转化为规范化的中文分词文本,并去除停用词,以提高文本分析的准确性。在代码中,通过绘制折线图来观察聚类数量与总的簇内离差平方和之和之间的关系,并根据拐点法选择最佳的聚类数量,拐点法得出的结果如图所示可知,该方法的拐点为4。之后,定义了TimeSeriesDataset类,这个类将数据集转换成适用于LSTM模型的格式,每个样本包含14天的历史数据,目标是预测第15天的热度值。
2025-07-23 19:48:36
638
原创 基于Python flask的常用AI工具功能数据分析与可视化系统设计与实现,技术包括LSTM、SVM、朴素贝叶斯三种算法,echart可视化
Flask是以Werkzeug工具包和Jinja2模板引擎作为基础的轻量级PythonWeb框架。微框架就是功能模块不臃肿、尽量保持简单的开发模式,并且能够通过扩展机制增添新功能,以实现尽可能大的灵活性。Flask秉承清晰胜于巧妙的设计理念,使程序员对项目组织形式有更大控制权。
2025-07-23 19:24:51
1261
原创 基于网络爬虫的在线医疗咨询数据爬取与医疗服务分析系统,技术采用django+朴素贝叶斯算法+boostrap+echart可视化
用户可以点击选择不同的科室查看评分数据的可视化分析界面,在该界面的中间有一个下拉选择框,可以选择科室后再点击“分析”,页面会将所选的数据向服务器发起请求,等待服务器处理请求,加载数据的过程中,页面会显示“正在加载”的提示,提升用户的体验度,等数据加载完后,ECharts就会绘制出一个圆环图,并且直观显示出各个评分类别所占的比值大小,饼图为不同颜色表示数据类别,评分分析界面图如图6.7所示,主要代码如图6.8所示。国外的在线医疗咨询数据采集及医疗服务分析系统的研究,主要是围绕提高临床决策能力和诊疗质量。
2025-07-22 19:15:39
1615
原创 基于python django深度学习的中文文本检测+识别,可以前端上传图片和后台管理图片
科技与互联网快速发展背景下,文字作为信息交流核心展现丰富多样性传统的纸质书写不再是信息流传的唯一途径,街道指示牌,电子显示屏以及广告牌等新媒介,大量承载着丰富的文字信息,这些信息常以图像形式出现在我们周边的环境里。于是,利用计算机技术达成对图像里文字内容的自动识别,该技术渐渐成了推进社会生活便捷化的关键所在。本文针对计算机视觉领域的目标检测和识别,尤其是自然图像中文字要素检测识别的问题,鉴于图像文字由于多角度、字体多样以及复杂的背景等特性,整个识别过程包括对文字区域识别和对文字内容的分析过程两部分。
2025-07-22 18:55:36
977
原创 基于Python flask的电影数据分析及可视化系统的设计与实现,可视化内容很丰富
基于Python的电影数据分析及可视化系统是一个应用于电影市场的数据分析平台,旨在为广大电影爱好者提供更准确、更详细、更实用的电影数据。数据分析部分主要是对来自猫眼电影网站上的数据进行清洗、分类处理、存储等步骤,数据可视化则是对数据分析结果进行呈现和展示,以便用户更好地了解电影市场实况和趋势,从而更好地选择观影内容。整个系统的数据采集部分采用Requests库进行爬虫,从猫眼电影网站爬取电影数据,数据预处理采用强大的Pandas库来完成,数据存储采用Mysql数据库。
2025-07-21 10:52:51
1658
原创 基于python django的BOSS直聘网站计算机岗位数据分析与可视化系统,包括薪酬预测及岗位推荐,推荐算法为融合算法
Django是流行的一种PythonWeb应用框架,它包含很多功能强大实用的工具,使开发者快速开发高效可伸缩的Web应用,Django的目标是帮助开发者专注于业务逻辑,而不关心实现细节,如图2-1。
2025-07-21 10:32:55
1359
2
原创 基于 Python Django 框架开发的大学生就业招聘信息分析推荐可视化平台,包含协同过滤算法和后台管理,有数据大屏
本系统是基于 Python Django 框架开发的招聘信息大数据分析可视化平台,旨在通过收集和分析大量招聘信息,为求职者和招聘公司提供直观的数据支持。系统的核心功能包括职位信息管理、用户登录注册、数据可视化展示等,帮助用户了解当前招聘市场的薪资分布、学历要求、经验需求等重要信息。系统通过 Django 后端管理职位数据,自动分类并计算薪资分布、学历要求等数据。例如,根据职位的最低薪资和最高薪资,系统能够将岗位划分为低薪、中薪、高薪和高薪以上四个类别,并展示相应的职位数量。
2025-02-18 16:32:12
429
1
原创 基于神经网络的图像分类系统,包含2个卷积层、2个池化层、2个全连接层和1个Softmax回归层,准确率达90%以上
该函数接收训练数据集、训练标签、图像的宽度和高度、批大小和队列的容量等参数,并返回经过批处理后的训练数据集和训练标签,以及验证数据集和验证标签。三、神经网络苹果识别系统设计:描述整个苹果识别系统的总体架构和流程,详细介绍数据采集方法和预处理步骤,确保输入数据质量,讨论提取和选择适合苹果识别的特征,包括颜色、形状等,详细介绍设计的神经网络模型结构,并解释其选择和优势,描述使用训练数据对神经网络模型进行训练和优化的方法和策略。其中,准确率是最常用的评估指标,用于衡量模型正确分类的图像数量占总体图像数量的比例。
2025-02-15 12:40:07
1123
原创 基于Python django的B站视频播放量数据分析可视化系统设计与实现
本课题旨在设计并实现一个基于大数据的B站(哔哩哔哩弹幕网)数据分析系统。随着互联网的快速发展和数字媒体的兴起,B站作为国内知名的视频分享平台,积累了海量的用户行为数据、视频信息和评论等数据资源。这些数据蕴含着丰富的商业价值,对于用户需求分析、个性化内容推荐及运营策略优化具有重要意义2.4。
2025-01-21 22:35:28
1647
原创 基于Python django的音乐用户偏好分析及可视化系统设计与实现
采用python开发语言的Django框架设计的前端页面,只需要运行python manage.pyrunserver,即可获取相关代码,并通过http ://127.0.0.1:8080/的链接,即可访问系统的主页面,如图4-6所示。通过详细的需求分析,确定一套最优的核心业务,并将其细化为多种不同的模块,从而制定一套完善的操作流程,使其符合最新的软件工程技术标准,最终形成一套可靠的、高效的系统。该系统致力于深入挖掘用户的音乐偏好,通过精细化的数据分析,为QQ音乐提供用户行为的全面视图。
2025-01-21 22:25:11
1549
原创 基于python对抖音热门视频的数据分析与实现
基于Python对抖音热门视频的数据分析表明,当前短视频平台的内容多样化和娱乐化趋势显著,涵盖了短剧、音乐、社交互动等多个领域。从视频标题的词频分析来看,词汇如“热门”、“短剧”、“抖音”等频繁出现,表明短剧内容和平台本身仍然是用户关注的核心。此外,“推荐”和“分享”的出现频率也反映了用户在内容传播和社交互动中的积极参与,说明平台用户对分享和传播内容有较高的热情。
2025-01-18 22:42:53
12826
8
原创 基于python的财务数据分析与可视化设计与实现
我乐家居股份有限公司总部位于南京江宁经济开发区,占地面积9万平方米,是一个集“信息化、高速化、智能化、立体化”——五化一体的生产基地,现已投产的溧水生产基地1号厂房占地11万平方米,引进多套全自动化柔性生产线,旨在促成我乐溧水生产基地各个板块工厂高效智能的生产需求,为我乐建造“智能工厂”,实现家居工业4.0革命而努力。南京我乐家居股份有限公司于2017年6月16日正式在上海证券交易所挂牌上市,成功登陆A股主板,股票代码:603326。是上交所第1293家上市公司,本次发行A股4000万股。对标企业是指选择一
2025-01-18 22:28:12
1577
原创 基于python的IMDb电影平台的数据采集与可视化
根据各地区电影的平均评分数据,可以看出,不同地区的电影评分差异较小,但也有一些微妙的区别。总体而言,“By Release”地区的评分最高,为7.27,可能代表的是按上映时间划分的全球评分,体现了更为广泛的观众基础和评价。国内市场和欧洲市场为全球票房的主要推动力。根据各个国家和地区的票房数据,可以得出:全球电影市场表现活跃,尤其是中国、美国和日本,这些国家的票房收入远超其他地区。而用户评论则提供了更为详细的反馈,评论文本中蕴含了观众的情感倾向,分为正面、负面和中立评价,能够揭示观众的具体喜好和不满之处。
2025-01-16 20:08:47
2090
原创 以“数学专业”为主题的中国mooc爬虫实现和数据分析
图12聚类分析为不同需求的学生群体提供了清晰的画像,聚类分析表明,一部分学生对个性化学习需求较强,他们偏好“适合自己基础”的课程内容,且表现出对课程的情感反应(如“喜欢”或“学渣”)。部分学生更青睐于“易懂”、“实用”的课程,他们偏好“干货”内容,并对课程的实际应用性有较高期望。分析表明,学生关注的主要主题包括:课程的讲解质量(如“老师”、“简洁”、“讲解”)、易懂性与实用性(如“简单”、“易懂”、“干货”)、复习与考试准备(如“期末”、“复习”)以及个性化学习(如“适合”、“喜欢”)。
2025-01-16 20:02:49
1332
纵横小说网站数据采集与分析实现代码+报告
2024-01-29
基于Python天气动态大屏代码和数据.zip
2024-01-27
基于Python的微博热点李佳琦忒网友话题的评论采集和情感分析的方法
2024-01-25
基于python豆瓣电影评论的情感分析和聚类分析,聚类分析(纯算法)手肘法进行检验,情感分析用snownlp
2024-01-24
基于Python英超足球赛的数据采集和预测,包括数据集
2024-01-25
基于Python flask MySQL的穷游网酒店数据采集与可视化大屏
2023-09-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人