
ml
文章平均质量分 84
帅气多汁你天哥
喜欢孤独的猿,热爱篮球,Java,LOL,创业,电影,睡觉,硬科幻,CNN,钢铁侠,军迷
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Attention 普通注意力机制详解 (二)
注意力入门普通注意力机制的了深入理解因为GRU每次输入都是一个词一个词的输入,那么普通的Seq2seq框架 就需要每个词算一遍 注意力权重并对解码器输出进行bmm计算,得到加权的解码器词向量输出 这样解码器的GRU每次解码的时候不是仅仅只考虑当前的一个词,而是考虑前后3个词甚至更多个词才会将这个词翻译前向传播的结构就是这样,那么反向传播就是整个学习过程的精华,解码器GRU通过logsoftmax计算概率损失, 这样会知道每个词翻译错误的误差 然后向下传播知道每个词翻译的误差后 , GRU的权原创 2021-10-29 17:05:00 · 803 阅读 · 1 评论 -
Seq2Seq attention 英译法 代码实现+ 注意力机制详解 (一)
话不多说上代码数据加载类from io import openimport unicodedataimport reimport randomimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch import optim# 注册驱动device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 起始标志SO.原创 2021-10-28 01:15:03 · 672 阅读 · 0 评论 -
人话解释线性回归和梯度下降
from sklearn.datasets import load_bostonfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.linear_model import LinearRegressionfrom sklearn.metrics import mean_squared_errorfrom sklearn.li.原创 2021-09-21 20:55:41 · 185 阅读 · 0 评论