python数据可视化-matplotlib学习总结

目录

(一)常见的图形

1、趋势图(直线图):plot()

2、散点图:scatter():

(二)统计图形

1、柱状图:bar(

2、条形图:barh()

3、直方图:hist()

4、饼图:pie()

5、级线图:polar()

6、气泡图(散点图):scatter()

7、树状图(棉棒图):stem()

8、箱线图:boxplot()

9、误差棒图:errorbar()

 (三)图形样式

1、设置刻度样式

2、增加指示注解与无指示注解

3、标题与坐标轴的投影效果

4、转移坐标轴

5、划分窗口:subplot()

(一)常见的图形

1、趋势图(直线图):plot()

import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei,Times New Roman, Arial'#设置字体格式,显示中文、正负号,罗马数字
import matplotlib.pyplot as plt
import numpy as np

x = np.linspace(0, 10, 100)  # 生成0~10之间的100个数
y = np.sin(x)  # 计算纵坐标
plt.plot(x, y)  # 绘制折线图
plt.title('Sin函数图像')  # 添加标题
plt.xlabel('x轴')  # 添加x轴标签
plt.ylabel('y轴')  # 添加y轴标签
#plt.xlim(-2,2)     #设定 x 坐标轴的显示范围在[-2,2]
#plt.axhline(y=0)    #添加水平参考线
#plt.grid()  #绘制网格线
#plt.axhline(y=0)    #绘制y=0的刻度线
#plt.axvspan(-4,2,facecolor='gray', alpha=0.3)    #添加在-4到2的垂直方向的颜色区域,填充颜色为灰色,透明度为 0.3

plt.show()  # 显示图形

pyplot 参数:

  • x:x轴数据,一般是一个数组或列表。

  • y:y轴数据,一般是一个数组或列表。

  • label:标签,用于说明数据的名称或含义。xlabel用于x轴,ylabel用于y轴

  • color或c:颜色,默认是蓝色,也可以是RGB值或颜色名称。

  • marker:点标记,用于显示每个数据点的形状。

  • linestyle或ls:线条类型,用于控制线条的样式、粗细等。

  • linewidth或lw:线条宽度,用于控制线条的宽度。

  • alpha:透明度,用于控制线条或点标记的透明度。

  • xlimylim:x轴和y轴的范围,用于设定坐标轴的刻度范围。

  • title:标题,用于给整个图形添加标题。

  • gird:绘制刻度线网格线

  • axhline:绘制平行于x轴的水平参数线

  • axvspan:绘制垂直于 x轴的水平参数区域

  • annotate:添加图形内容细节的指向型注释

  • text:添加图形内容细节的无指向型注释

  • legend:用于在图像中添加自定义的图例

 结果:

 

2、散点图:scatter():

import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei,Times New Roman, Arial'#设置字体格式,显示中文、正负号,罗马数字
import matplotlib.pyplot as plt
import numpy as np

# 设置数据
x = np.random.rand(50)
y = np.random.rand(50)
# 绘制散点图
plt.scatter(x, y, s=50, c='b', marker='o', alpha=0.5)
# 添加标题和坐标轴标签
plt.title('散点图')
plt.xlabel('x轴')
plt.ylabel('y轴')
# 显示图像
plt.show()

参数解释:

  • x :散点图 x 轴的数据;
  • y :散点图 y 轴的数据;
  • s :散点的尺寸,即标记的大小;
  • c :散点的颜色;
  • marker :散点的形状,默认是圆形;
  • alpha :透明度,取值范围为 0~1,值越小透明度越高。

 结果:

 

(二)统计图形

1、柱状图:bar(

bar(x, height, width=0.8, bottom=None, align='center', data=None, **kwargs)
  • x:柱形图的 x 坐标数据;
  • height:柱形图的高度,对应于每个 x 坐标数据的高度;
  • width:柱形的宽度,默认为 0.8;
  • bottom:柱形的底部位置,默认为 None,表示将底部设定为绘图平面的 y 轴;
  • align:柱形的对齐方式,可以是 'center''edge' 等;
  • data:数据源对象,可以是多种数据类型,例如 DataFrame、Series、数组等;
  • kwargs:其他可选参数,包括柱形颜色、边框颜色、标签位置等相关设置。
import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei,Times New Roman, Arial'#设置字体格式,显示中文、正负号,罗马数字
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = ['A', 'B', 'C', 'D', 'E']
y = np.random.randint(0, 10, size=(len(x)))

# 绘制柱状图
plt.bar(x, y, width=0.6, bottom=None, align='center', alpha=0.8)

# 添加标签
for i, v in enumerate(y):
    plt.text(i, v+0.2, str(v), ha='center', fontsize=10)
# 显示图形
plt.show()

 

2、条形图:barh()

barh(y, width, height=0.8, left=None, align='center', data=None, **kwargs)
  • y:柱形条的 y 坐标数据;
  • width:柱形条的宽度,对应于每个 y 坐标数据的宽度;
  • height:柱形条的高度,默认为 0.8;
  • left:柱形的左侧位置,默认为 None,表示将左侧设定为绘图平面的 x 轴;
  • align:柱形的对齐方式,可以是 'center''edge' 等;
  • data:数据源对象,可以是多种数据类型,例如 DataFrame、Series、数组等;
  • kwargs:其他可选参数,包括柱形颜色、边框颜色、标签位置等相关设置。
import matplotlib
matplotlib.rcParams['font.family'] = 'SimHei,Times New Roman, Arial'#设置字体格式,显示中文、正负号,罗马数字
import matplotlib.pyplot as plt
import numpy as np

# 生成数据
y = ['A', 'B', 'C', 'D', 'E']
x = np.random.randint(0, 10, size=(len(y)))

# 绘制水平柱状图
plt.barh(y, x, height=0.6, left=None, align='center', alpha=0.8)

# 添加标签
for i, v in enumerate(x):
    plt.text(v+0.2, i, str(v), va='center', fontsize=10)

# 显示图形
plt.show()

 

3、直方图:hist()

hist(x, bins=None, range=None, density=False, 
    weights=None, cumulative=False, bottom=None,
    histtype='bar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值