- 博客(2)
- 收藏
- 关注
原创 HardNet详细解释
hardnet摘要受到sift的启发,引入了度量学习层。表明了去最大化两个最邻近的正样本和负样本的距离会取得很好的效果。在L2Net中使用全新的损失函数,并将其命名为HardNet。同样也是输出的128维的描述符。引言尽管端到端的学习模式很厉害(图像匹配、相机定位、传统的检测器和局部的图块描述符),但是无法完全代替复杂经典的方法。LIFT、MatchNet、DeepCompare作为第一批使用端到端学习模式的算法,在图块验证任务中表现良好,但却并未流行起来。就目前的研究显示,SIFT及其变形体在图像
2020-11-01 21:07:55
5746
1
翻译 L2-Net论文粗解
本篇文章来自于对L2-Net: Deep Learning of Discriminative Patch Descriptor in Euclidean Space文章的翻译和自己的一些理解,很多内容也参考了添加链接描述,然后做了一些修改,如果有不对的地方欢迎指出。个人觉得最主要的还是理解它的网络结构,损失函数可能不是很好理解,不必过于强求总述:卷积神经网络在patch匹配中的应用,可根据有无度量学习层而分为两类:(1)有度量学习层的把patch的匹配视为一个二进制分类,因此也就不存在描述符的概念
2020-10-22 11:35:05
1805
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人