神经网络中的激活函数与损失函数&深入理解推导softmax交叉熵

本文深入探讨了神经网络中的激活函数,包括sigmoid、softmax、ReLU和Tanh,并详细讲解了softmax交叉熵损失函数,重点阐述了softmax函数的优缺点及其在梯度计算中的重要性,以及损失函数的作用和计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络中的激活函数与损失函数&深入理解softmax交叉熵

前面在深度学习入门笔记1深度学习入门笔记2中已经介绍了激活函数和损失函数,这里做一些补充,主要是介绍softmax交叉熵损失函数

激活函数

sigmoid函数

神经网络中经常使用的一个激活函数就是sigmoid函数。

它的图像是:

sigmoid函数常用于回归问题。

softmax函数

image-20211231110201705

softmax函数的分子是输入信号ak的指数函数,分母是所有输入信号的指数函数的和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值