思路:将节点的左右子树进行翻转即可
使用前序遍历或者后序遍历,这两者可以把根节点定下来,但是中序遍历的话会把第二层的节点再次交换(可以画图知)
迭代法:
from typing import List, Optional
from collections import deque
# 二叉树生成代码
def generate_tree(vals):
if len(vals) == 0:
return None
que = [] # 定义队列
fill_left = True # 由于无法通过是否为 None 来判断该节点的左子树是否可以填充,用一个记号判断是否需要填充左节点
for val in vals:
node = TreeNode(val) if val else None # 非空值返回节点类,否则返回 None
if len(que)==0:
root = node # 队列为空的话,用 root 记录根结点,用来返回
que.append(node)
elif fill_left:
que[0].left = node
fill_left = False # 填充过左子树后,改变记号状态
if node: # 非 None 值才进入队列
que.append(node)
else:
que[0].right = node
if node:
que.append(node)
que.pop(0) # 填充完右子树,弹出节点
fill_left = True #
return root
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
# 前序遍历
if not root:
return None
# 先将根节点的左右子树进行对换
root.left, root.right = root.right, root.left
# 对左子树节点进行兑换
self.invertTree(root.left)
# 对右子树节点进行兑换
self.invertTree(root.right)
return root
if __name__ == '__main__':
null = None
root = [4,2,7,1,3,6,9]
root = generate_tree(root)
res = Solution().invertTree(root)
print(res.val)
print(res.left.val)
print(res.right.val)
print(res.left.left.val)
print(res.left.right.val)
print(res.right.left.val)
print(res.right.right.val)
思路:要比较的是节点下的左右子树能否互相翻转,若可以,则是对称,若不行,则不对称;
本题遍历只能是“后序遍历”:因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。
from typing import List, Optional
from collections import deque
# 二叉树生成代码
def generate_tree(vals):
if len(vals) == 0:
return None
que = [] # 定义队列
fill_left = True # 由于无法通过是否为 None 来判断该节点的左子树是否可以填充,用一个记号判断是否需要填充左节点
for val in vals:
node = TreeNode(val) if val else None # 非空值返回节点类,否则返回 None
if len(que)==0:
root = node # 队列为空的话,用 root 记录根结点,用来返回
que.append(node)
elif fill_left:
que[0].left = node
fill_left = False # 填充过左子树后,改变记号状态
if node: # 非 None 值才进入队列
que.append(node)
else:
que[0].right = node
if node:
que.append(node)
que.pop(0) # 填充完右子树,弹出节点
fill_left = True #
return root
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def isSymmetric(self, root: Optional[TreeNode]) -> bool:
if not root:
return True
return self.compare(root.left, root.right)
def compare(self, left, right):
# 排除空节点的情况
if left == None and right == None:
# 两个一个剩右,一个剩左,对称
return True
elif left != None and right == None:
return False
elif left == None and right != None:
return False
# 排除左右节点值不一致的情况
elif left.val != right.val:
return False
# 左右节点都部位空,可以进行递归做下一层判断
outside = self.compare(left.left, right.right) # 左子树:左、右子树:右
inside = self.compare(left.right, right.left) # # 左子树:右、右子树:左
isSame = outside and inside
return isSame
if __name__ == '__main__':
null = None
root = [1,2,2,3,4,4,3]
root = generate_tree(root)
res = Solution().isSymmetric(root)
print(res)
from typing import List, Optional
from collections import deque
# 二叉树生成代码
def generate_tree(vals):
if len(vals) == 0:
return None
que = [] # 定义队列
fill_left = True # 由于无法通过是否为 None 来判断该节点的左子树是否可以填充,用一个记号判断是否需要填充左节点
for val in vals:
node = TreeNode(val) if val else None # 非空值返回节点类,否则返回 None
if len(que)==0:
root = node # 队列为空的话,用 root 记录根结点,用来返回
que.append(node)
elif fill_left:
que[0].left = node
fill_left = False # 填充过左子树后,改变记号状态
if node: # 非 None 值才进入队列
que.append(node)
else:
que[0].right = node
if node:
que.append(node)
que.pop(0) # 填充完右子树,弹出节点
fill_left = True #
return root
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def maxDepth(self, root: Optional[TreeNode]) -> int:
return self.getdepth(root)
def getdepth(self, node):
if not node:
return 0
# 计算左侧深度
leftheight = self.getdepth(node.left)
# 计算右侧深度
rightheight = self.getdepth(node.right)
# 加1是因为深度是从1开始的
height = 1 + max(leftheight, rightheight)
return height
if __name__ == '__main__':
null = None
root = [3,9,20,null,null,15,7]
root = generate_tree(root)
res = Solution().maxDepth(root)
print(res)
前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。
特别注意:当一个左子树为空,右子树不为空时,最低点并不是左子树的位置,而是要根据右子树来判断,翻转同理;
from typing import List, Optional
from collections import deque
# 二叉树生成代码
def generate_tree(vals):
if len(vals) == 0:
return None
que = [] # 定义队列
fill_left = True # 由于无法通过是否为 None 来判断该节点的左子树是否可以填充,用一个记号判断是否需要填充左节点
for val in vals:
node = TreeNode(val) if val else None # 非空值返回节点类,否则返回 None
if len(que)==0:
root = node # 队列为空的话,用 root 记录根结点,用来返回
que.append(node)
elif fill_left:
que[0].left = node
fill_left = False # 填充过左子树后,改变记号状态
if node: # 非 None 值才进入队列
que.append(node)
else:
que[0].right = node
if node:
que.append(node)
que.pop(0) # 填充完右子树,弹出节点
fill_left = True #
return root
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
return self.getDepth(root)
def getDepth(self, node):
if not node:
return 0
# 计算左侧深度
leftDepth = self.getDepth(node.left)
# 计算右侧深度
rightDepth = self.getDepth(node.right)
# 当一个左子树为空,右子树不为空,这时最低点并不是左子树的位置
if node.left is None and node.right is not None:
return 1+rightDepth
# 当一个右子树为空,左子树不为空,这时最低点并不是右子树的位置
if node.left is not None and node.right is None:
return 1+leftDepth
res = 1+min(leftDepth, rightDepth)
return res
if __name__ == '__main__':
null = None
root = [3,9,20,null,null,15,7]
root = generate_tree(root)
res = Solution().minDepth(root)
print(res)