- 博客(8)
- 收藏
- 关注
原创 [提示词工程] 最佳实践
本文探讨了在VertexAI的LanguageStudio中进行提示工程的最佳实践。首先,强调了提供示例的重要性,这有助于模型学习并调整其生成内容。其次,建议设计简洁、清晰的提示,避免复杂语言和不必要信息。此外,具体说明输出要求、使用指令而非限制、控制最大token长度、在提示中使用变量、尝试不同的输入格式和写作风格、混合分类任务中的响应类别、适应模型更新、尝试不同的输出格式、使用JSON和Schema、与其他提示工程师合作实验、应用CoT最佳实践、记录提示尝试等策略,都是提高提示效果的关键。最后,强调了提
2025-05-18 15:50:12
820
原创 [提示词工程] 提示技巧[3]
Gemini主要专注于基于文本的提示,这也包括用于返回代码的编写提示。让我们前往Vertex AI Studio,测试这些提示以查看一些编码示例。
2025-05-07 11:12:18
768
原创 [提示词工程] 提示技巧(2)
在实践中,ReAct 提示需要理解,需要不断地重新发送之前的提示/响应(并对额外生成的内容进行修剪),以及使用适当的示例/指令设置模型。逐步回退提示法是一种通过提示大型语言模型(LLM)首先考虑与具体任务相关的通用问题,然后将该通用问题的答案输入到后续的具体任务提示中,从而提高性能的技术。推理与行动(ReAct)提示是一种范例,用于使大型语言模型能够通过结合自然语言推理与外部工具(搜索、代码解释器等)来解决复杂任务,允许大型语言模型执行某些操作,例如与外部API交互以检索信息,这是迈向智能体建模的第一步。
2025-04-30 11:35:17
663
原创 [提示词工程] 提示技巧(1)
大型语言模型(LLMs)经过调整以遵循指令,并在大规模数据上进行训练,因此它们能够理解提示并生成答案。然而,大型语言模型并非完美的;提示文本越清晰,模型就越能更好地预测接下来的可能文本。此外,利用大型语言模型的训练方式和工作原理的特定技巧,将帮助我们从模型中获得更相关的结果。现在我们已经了解了什么是提示工程以及它需要什么,让我们深入探讨一些最重要的提示技巧示例。
2025-04-22 16:11:35
1563
原创 [提示词工程] LLM输出配置
一旦选择了模型,就需要确定模型的配置。大多数LLM(大型语言模型)都提供了多种配置选项,用以控制其输出。高效的提示工程要求根据任务对这些配置进行优化设置。
2025-04-14 14:00:13
587
原创 [提示词工程]1.引言
对于大型语言模型而言,其输入是文本提示(有时也伴随如图像提示等其他模态),模型利用这些输入来预测并生成特定的输出。我们无需成为数据科学家或机器学习工程师——每个人都能编写提示。然而,精心编写(或设计)出最有效的提示可能相当复杂。提示的许多方面都会影响其效果:使用的模型、模型的训练数据、模型配置、措辞选择、风格与语气、结构以及上下文都很重要。因此,提示工程是一个迭代的过程。不恰当或质量欠佳的提示可能导致模糊不清、不准确的回答,并且会妨碍模型提供有意义输出的能力。
2025-04-11 11:25:30
156
原创 通过协同过滤构建推荐引擎
协同过滤是一种技术,它可以根据相似用户的反应(或喜好),筛选出特定用户可能喜欢的物品。它的工作原理是:搜索大量人群,找到一小群与特定用户品味相似的用户。然后,系统会考察这些相似用户喜欢的物品,并将这些信息结合起来,生成一个排序后的推荐列表。有很多方法可以用来判定哪些用户是相似的,并结合他们的选择来生成推荐列表。本文将向您展示如何使用 Python 来实现这一点。
2025-04-09 13:35:53
996
原创 金融项目利器Techan.js
Techan.js 是一个功能强大、易于使用的技术分析和图表绘制库,为金融数据可视化提供了完整的解决方案。它的模块化设计和丰富的功能使其成为开发金融应用和数据分析工具的理想选择。无论是构建交易系统、分析工具还是教育平台,Techan.js 都能提供强大的支持。
2025-04-03 16:20:02
481
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人