基于Resemblyzer 的声纹特征提取实例解析

一 概念

  Resemblyzer 是一个基于深度学习的音频处理库,主要用于声音特征提取和相似度分析,特别适合声纹相关任务。以下是一个详细的 Resemblyzer 的应用示例:

二 实例:


from resemblyzer import VoiceEncoder, preprocess_wav
from pathlib import Path

# 加载预训练模型
encoder = VoiceEncoder()

# 预处理音频(支持 wav 格式,自动转为单声道和 16kHz 采样率)
audio_path = Path("sample_audio.wav")  # 替换为你的音频文件
wav = preprocess_wav(audio_path)

# 提取声纹嵌入向量(shape: (256,))
embedding = encoder.embed_utterance(wav)
print(f"声纹嵌入向量长度: {len(embedding)}")
print(f"前 5 个值: {embedding[:5]}")

三 总结

  这个大模型的性能还是非常强悍的。后面要好好的挖掘。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值