Hive进阶(4)----MapReduce的计算过程(赋图助君理解)

本文详细介绍了MapReduce的计算过程,包括Map阶段的块数据处理、排序和分区,以及Reduce阶段的文件合并与计算。重点提及了Hadoop作为MapReduce的重要实现,强调其在大规模数据集处理中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MapReduce的计算过程

        MapReduce是一种编程模型和处理大规模数据集的方法。它通常用于分布式计算环境中,能够将数据处理任务分解成独立的部分,分配给多台计算机进行并行处理。这个模型由Google提出,并在开源领域中得到了广泛的应用和实现。MapReduce模型包含两个主要阶段,MapReduce的优点在于它的可伸缩性和容错性。它可以处理非常大的数据集,并且能够在计算过程中处理节点故障等问题,保证整个计算任务的完成。Hadoop是最著名的MapReduce实现之一,它是一个开源的分布式计算框架,用于在大规模集群上运行MapReduce作业。

一、计算流程

Map阶段

1.按照块数量进行split的块数据读取

2.split切割后的数据传递给对应的map进行处理,会对数据转为kv (张三,1) (李四,2)

3.map将处理的后的数据写入buffer缓存区

4.对缓冲区内的数据进行spill溢出(读取缓冲区内的数据)

5.对读取的数据进行分区,将数据拆分多份

6.对每份拆分的数据进行排序 sort

7.将拆分的数据写入不同的文件

8.在将每次溢出的数据合并merge在一起,保存同一文件,文件是临时文件,计算后会删除

Reduce阶段

1.根据的分区数创建出多个reduce

2.每个reduce从不同的map中fetch获取相同分区的文件数据

3.在将fetch后的文件合并,对合并后的数据进行排序

4.reduce对合并后的文件数据进行计算

5.reduce对结果输出到hdfs的目录下

二、图形化流程

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值