MLP:多层感知器Multi-layer Perceptron

本文详细介绍了多层感知器(MLP),一种常见的前馈神经网络,包括其结构(输入、隐藏和输出层,全连接网络),权重和偏差的作用,以及反向传播算法用于训练的过程。重点强调了激活函数在引入非线性特性的关键作用,如Sigmoid、ReLU和Tanh。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MLP是多层感知器(Multilayer Perceptron)的缩写,是一种基本的人工神经网络(Artificial Neural Network,ANN)模型,是一种前馈神经网络。它是由多个神经元组成的网络,通常包含一个或多个隐藏层(hidden layers)、一个输入层(input layer)和一个输出层(output layer)。

MLP通常用于解决分类和回归等问题。

MLP是全连接网络。(fully connected layer)

基本单元是神经元,每个神经元接收来自前一层的输入并产生一个输出。

MLP的层(layer)

①按顺序分为:输入层(input layer)->隐藏层(hidden layer)->输出层(output layer)
②每个层可以看做是y’=w*x+b

MLP的权重w和偏差b

每个连接都有一个相关联的权重,一般用“反向传播”算法(梯度下降优化权重和偏差,达到实际值与预测值之间的最小损失loss)进行训练。

MLP的激活函数

①每层一般会经过一个激活函数再输出
②激活函数引入了非线性性质,使得神经网络能够学习非线性关系。常用的激活函数包括Sigmoid、ReLU、Tanh等。
在这里插入图片描述

在这里插入图片描述

softmax和sigmoid: softmax不过(0,0.5)

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值