[LeetCode 中等 动态规划]1143. 最长公共子序列

本文介绍了如何使用动态规划算法解决字符串最长公共子序列问题,通过示例展示了如何计算两个给定字符串的最长公共子序列长度,以及关键的代码实现。重点讲解了如何构建dp矩阵并更新状态,适用于初级到中级的算法学习者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

输入:text1 = “abcde”, text2 = “ace”
输出:3
解释:最长公共子序列是 “ace”,它的长度为 3。
示例 2:

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc”,它的长度为 3。
示例 3:

输入:text1 = “abc”, text2 = “def”
输出:0
解释:两个字符串没有公共子序列,返回 0。

提示:

1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。

动态规划

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int len1 = text1.length();
        int len2 = text2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];

        for(int i = 0; i < len1; i++){
            for(int j = 0;j < len2; j++){
                if(text1.charAt(i) == text2.charAt(j)){
                    dp[i + 1][j + 1] = dp[i][j] + 1; 
                }else{
                    dp[i + 1][j + 1] = Math.max(dp[i][j + 1], dp[i + 1][j]);
                }
            }
        }

        return dp[len1][len2];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值