[LeetCode 困难]295. 数据流的中位数

这篇博客介绍了如何利用大顶堆和小顶堆设计一个数据结构,以支持动态添加整数并实时计算中位数。在数据流中,当新元素加入时,通过调整两个堆的平衡来保持中位数的正确性。当数据范围有限时,如在0到100之间,可以进一步优化算法以提高效率。示例展示了具体实现过程和操作结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:

addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:

如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?

大顶堆和小顶堆

import java.util.PriorityQueue;

public class MedianFinder {
    private int count;
    private PriorityQueue<Integer> maxheap;
    private PriorityQueue<Integer> minheap;

    //构造器 初始化一个count记录个数 还有两个堆
    public MedianFinder() {
        count = 0;
        maxheap = new PriorityQueue<>((x, y) -> y - x);
        minheap = new PriorityQueue<>();
    }

    public void addNum(int num) {
        count += 1;
        //最小堆里存的是大的数们 从小往大排
        //最大堆里存的是小的数们 从大往小排
        maxheap.offer(num);
        minheap.add(maxheap.poll());
        // 如果两个堆合起来的元素个数是奇数,小顶堆要拿出堆顶元素给大顶堆
        // 设定规则 放数量是奇数 从哪个堆里找中位数
        if ((count & 1) != 0) {
            maxheap.add(minheap.poll());
        }
    }


    public double findMedian() {
        if ((count % 2) == 0) {
            // 如果两个堆合起来的元素个数是偶数,数据流的中位数就是各自堆顶元素的平均值
            return (double) (maxheap.peek() + minheap.peek()) / 2;
        } else {
            // 如果两个堆合起来的元素个数是奇数,数据流的中位数大顶堆的堆顶元素
            return (double) maxheap.peek();
        }
    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * MedianFinder obj = new MedianFinder();
 * obj.addNum(num);
 * double param_2 = obj.findMedian();
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值