题目描述
中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
进阶:
如果数据流中所有整数都在 0 到 100 范围内,你将如何优化你的算法?
如果数据流中 99% 的整数都在 0 到 100 范围内,你将如何优化你的算法?
大顶堆和小顶堆
import java.util.PriorityQueue;
public class MedianFinder {
private int count;
private PriorityQueue<Integer> maxheap;
private PriorityQueue<Integer> minheap;
//构造器 初始化一个count记录个数 还有两个堆
public MedianFinder() {
count = 0;
maxheap = new PriorityQueue<>((x, y) -> y - x);
minheap = new PriorityQueue<>();
}
public void addNum(int num) {
count += 1;
//最小堆里存的是大的数们 从小往大排
//最大堆里存的是小的数们 从大往小排
maxheap.offer(num);
minheap.add(maxheap.poll());
// 如果两个堆合起来的元素个数是奇数,小顶堆要拿出堆顶元素给大顶堆
// 设定规则 放数量是奇数 从哪个堆里找中位数
if ((count & 1) != 0) {
maxheap.add(minheap.poll());
}
}
public double findMedian() {
if ((count % 2) == 0) {
// 如果两个堆合起来的元素个数是偶数,数据流的中位数就是各自堆顶元素的平均值
return (double) (maxheap.peek() + minheap.peek()) / 2;
} else {
// 如果两个堆合起来的元素个数是奇数,数据流的中位数大顶堆的堆顶元素
return (double) maxheap.peek();
}
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/