[LeetCode 困难 排序]493. 翻转对 剑指 Offer 51. 数组中的逆序对

博客给出一个数组重要翻转对的定义,即若 i < j 且 nums[i] > 2*nums[j] ,(i, j) 为重要翻转对。需返回给定数组中重要翻转对的数量,并给出示例。同时介绍基于归并排序的解法,分析其时间复杂度为 O(NlogN),空间复杂度为 O(N)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对。

你需要返回给定数组中的重要翻转对的数量。

示例 1:

输入: [1,3,2,3,1]
输出: 2
示例 2:

输入: [2,4,3,5,1]
输出: 3
注意:

给定数组的长度不会超过50000。
输入数组中的所有数字都在32位整数的表示范围内。

基于归并排序

复杂度分析
时间复杂度:O(NlogN),其中 N 为数组的长度。
空间复杂度:O(N),其中 N 为数组的长度。

class Solution {
    public int reversePairs(int[] nums) {
        if (nums.length == 0)  return 0;
        return reversePairsRecursive(nums, 0, nums.length - 1);
    }

    public int reversePairsRecursive(int[] nums, int left, int right) {
        if (left == right) {
            return 0;
        } else {
            int mid = (left + right) / 2;
            int n1 = reversePairsRecursive(nums, left, mid);
            int n2 = reversePairsRecursive(nums, mid + 1, right);
            int ret = n1 + n2;

            //在有序的两个数组里 判断重要翻转对的数量
            int i = left;
            int j = mid + 1;
            while (i <= mid) {
                //这里写的思路是 j是一种向后的因为是排序好的 所以前面的j满足条件 那么后面的数和j位置也一定是
                //重要反转对 ; 每一次i循环 针对j的位置加一次 就可以统计出来有多少反转对
                while (j <= right && (long) nums[i] > 2 * (long) nums[j]) {
                    j++;
                }
                ret += j - mid - 1;
                i++;
            }

            // 合并两个排序数组
            //为了上一级递归的计算重要反转对
            int[] sorted = new int[right - left + 1];
            int p1 = left, p2 = mid + 1;
            int p = 0;
            while (p1 <= mid || p2 <= right) {
                if (p1 > mid) {
                    sorted[p++] = nums[p2++];
                } else if (p2 > right) {
                    sorted[p++] = nums[p1++];
                } else {
                    if (nums[p1] < nums[p2]) {
                        sorted[p++] = nums[p1++];
                    } else {
                        sorted[p++] = nums[p2++];
                    }
                }
            }

            //把已经排序好的数组放进sum数组中
            for (int k = 0; k < sorted.length; k++) {
                nums[left + k] = sorted[k];
            }
            return ret;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值