给定一个非负整数数组 nums 和一个整数 m ,你需要将这个数组分成 m 个非空的连续子数组。
设计一个算法使得这 m 个子数组各自和的最大值最小。
示例 1:
输入:nums = [7,2,5,10,8], m = 2
输出:18
解释:
一共有四种方法将 nums 分割为 2 个子数组。 其中最好的方式是将其分为 [7,2,5] 和 [10,8] 。
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
示例 2:
输入:nums = [1,2,3,4,5], m = 2
输出:9
示例 3:
输入:nums = [1,4,4], m = 3
输出:4
提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 106
1 <= m <= min(50, nums.length)
二分查找
复杂度分析
- 时间复杂度:O(n×log(sum−maxn)),其中 sum 表示数组 nums 中所有元素的和,maxn 表示数组所有元素的最大值。每次二分查找时,需要对数组进行一次遍历,时间复杂度为 O(n),因此总时间复杂度是 O(n×log(sum−maxn))。
- 空间复杂度:O(1)
class Solution {
public int splitArray(int[] nums, int m) {
int left = 0, right = 0;
for (int i = 0; i < nums.length; i++) {
right += nums[i];
if (left < nums[i]) {
left = nums[i];
}
}
while (left < right) {
int mid = (right - left) / 2 + left;
//是否能够产生n个和的值小于等于mid的数组
if (check(nums, mid, m)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
public boolean check(int[] nums, int x, int m) {
int sum = 0;
int cnt = 1;
for (int i = 0; i < nums.length; i++) {
if (sum + nums[i] > x) {
cnt++;
sum = nums[i];
} else {
sum += nums[i];
}
}
return cnt <= m;
}
}
动态规划
-
时间复杂度:O(n^2 ×m),其中 n 是数组的长度,m 是分成的非空的连续子数组的个数。总状态数为 O(n ×m),状态转移时间复杂度 O(n),所以总时间复杂度为 O(n^2×m)。
-
空间复杂度:O(n×m),为动态规划数组的开销。
class Solution {
public int splitArray(int[] nums, int m) {
int n = nums.length;
int[][] f = new int[n + 1][m + 1];
for (int i = 0; i <= n; i++) {
Arrays.fill(f[i], Integer.MAX_VALUE);
}
int[] sub = new int[n + 1];
for (int i = 0; i < n; i++) {
sub[i + 1] = sub[i] + nums[i];
}
f[0][0] = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= Math.min(i, m); j++) {
for (int k = 0; k < i; k++) {
//每次循环找的是 前k位组成 j-1组 后k位组成1组 来比较两个组大小
//再和自身的大小比较 寻找最小的
f[i][j] = Math.min(f[i][j], Math.max(f[k][j - 1], sub[i] - sub[k]));
}
}
}
return f[n][m];
}
}