[LeetCode 困难]410. 分割数组的最大值

博客围绕将非负整数数组分成 m 个非空连续子数组,使子数组和的最大值最小这一问题展开。介绍了二分查找和动态规划两种解法,并分别分析了它们的时间复杂度和空间复杂度,二分查找时间复杂度为 O(n×log(sum−maxn)) 、空间复杂度为 O(1),动态规划时间复杂度为 O(n^2 ×m) 、空间复杂度为 O(n×m)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个非负整数数组 nums 和一个整数 m ,你需要将这个数组分成 m 个非空的连续子数组。

设计一个算法使得这 m 个子数组各自和的最大值最小。

示例 1:
输入:nums = [7,2,5,10,8], m = 2
输出:18
解释:
一共有四种方法将 nums 分割为 2 个子数组。 其中最好的方式是将其分为 [7,2,5] 和 [10,8] 。
因为此时这两个子数组各自的和的最大值为18,在所有情况中最小。
示例 2:

输入:nums = [1,2,3,4,5], m = 2
输出:9
示例 3:

输入:nums = [1,4,4], m = 3
输出:4
 

提示:
1 <= nums.length <= 1000
0 <= nums[i] <= 106
1 <= m <= min(50, nums.length)

二分查找

复杂度分析

  • 时间复杂度:O(n×log(sum−maxn)),其中 sum 表示数组 nums 中所有元素的和,maxn 表示数组所有元素的最大值。每次二分查找时,需要对数组进行一次遍历,时间复杂度为 O(n),因此总时间复杂度是 O(n×log(sum−maxn))。
  • 空间复杂度:O(1)
class Solution {
    public int splitArray(int[] nums, int m) {
        int left = 0, right = 0;
        for (int i = 0; i < nums.length; i++) {
            right += nums[i];
            if (left < nums[i]) {
                left = nums[i];
            }
        }
        while (left < right) {
            int mid = (right - left) / 2 + left;
            //是否能够产生n个和的值小于等于mid的数组
            if (check(nums, mid, m)) {
                right = mid;
            } else {
                left = mid + 1;
            }
        }
        return left;
    }


    public boolean check(int[] nums, int x, int m) {
        int sum = 0;
        int cnt = 1;
        for (int i = 0; i < nums.length; i++) {
            if (sum + nums[i] > x) {
                cnt++;
                sum = nums[i];
            } else {
                sum += nums[i];
            }
        }
        return cnt <= m;
    }
}

动态规划

  • 时间复杂度:O(n^2 ×m),其中 n 是数组的长度,m 是分成的非空的连续子数组的个数。总状态数为 O(n ×m),状态转移时间复杂度 O(n),所以总时间复杂度为 O(n^2×m)。

  • 空间复杂度:O(n×m),为动态规划数组的开销。

class Solution {
   public int splitArray(int[] nums, int m) {
       int n = nums.length;
       int[][] f = new int[n + 1][m + 1];
       for (int i = 0; i <= n; i++) {
           Arrays.fill(f[i], Integer.MAX_VALUE);
       }
       int[] sub = new int[n + 1];
       for (int i = 0; i < n; i++) {
           sub[i + 1] = sub[i] + nums[i];
       }
       f[0][0] = 0;
       for (int i = 1; i <= n; i++) {
           for (int j = 1; j <= Math.min(i, m); j++) {
               for (int k = 0; k < i; k++) {
                   //每次循环找的是 前k位组成 j-1组 后k位组成1组 来比较两个组大小
                   //再和自身的大小比较 寻找最小的
                   f[i][j] = Math.min(f[i][j], Math.max(f[k][j - 1], sub[i] - sub[k]));
               }
           }
       }
       return f[n][m];
   }
}
题目描述:给定一个非负整数数组nums一个整数m,你需要将这个数组m个连续子数组。设计一个算法使得这m个子数组中的最大最小。 解题思路: 这是一个典型的二分搜索题目,可以使用二分查找来解决。 1. 首先确定二分的左右边界。左边界为数组中最大的值,右边界为数组中所有元素之。 2. 在二分搜索的过程中,计算出分割数组的组count,需要使用当前的中间值来进行判断。若当前的中间值不够分割m个子数组,则说明mid值偏小,将左边界更新为mid+1;否则,说明mid值偏大,将右边界更新为mid。 3. 当左边界小于等于右边界时,循环终止,此时的左边界即为所求的结果。 具体步骤: 1. 遍历数组,找到数组中的最大值,并计算数组的总。 2. 利用二分查找搜索左右边界,从左边界到右边界中间的值为mid。 3. 判断当前的mid值是否满足题目要求,若满足则更新右边界为mid-1; 4. 否则,更新左边界为mid+1。 5. 当左边界大于右边界时,循环终止,返回左边界即为所求的结果。 代码实现: ```python class Solution: def splitArray(self, nums: List[int], m: int) -> int: left = max(nums) right = sum(nums) while left <= right: mid = (left + right) // 2 count = 1 total = 0 for num in nums: total += num if total > mid: total = num count += 1 if count > m: left = mid + 1 else: right = mid - 1 return left ``` 时间复杂度分析:二分搜索的时间复杂度为O(logN),其中N为数组的总,而遍历数组的时间复杂度为O(N),因此总的时间复杂度为O(NlogN)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值