自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(27)
  • 收藏
  • 关注

原创 Day25 opencv人脸识别

face_recognition 是一个基于 Python 的强大库,专门用于人脸识别任务。它结合了 dlib 库的 HOG(Histogram of Oriented Gradients)特征和深度学习模型,提供了易于使用的接口来执行人脸检测、面部特征点定位和人脸识别。该库由 Adam Geitgey 开发,旨在简化人脸识别的复杂性,使其更易于入门。

2024-11-05 21:01:54 690

原创 Day24 opencv预处理

高斯滤波是图像处理中常用的一种平滑滤波方法,主要作用是去除图像中的噪声,并减少图像细节,以实现图像的平滑处理。高斯滤波的原理是利用高斯函数对图像进行加权平均,通过这种方式,高斯滤波可以有效地减少图像中的噪声,并保留图像的整体特征。Canny边缘检测算法可以有效地提取图像中的边缘,通过设置低阈值和高阈值来识别可能的边缘像素和强烈的边缘像素,从而减少由于噪声引起的虚假边缘。较大时,空间上距离较远的像素也会被赋予较大的权重,这意味着滤波器会在更大的空间范围内进行平滑处理,导致图像的局部细节被进一步平滑。

2024-11-04 18:31:11 968

原创 Day23 opencv图像预处理

在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV 提供了许多图像预处理的函数和方法,常见的操作包括图像空间转换、图像大小调整、图像仿射变换、图像翻转、图像裁剪、图像二值化处理、图像去噪、边缘检测、图像平滑处理和图像形态学等。通过 cv2.getRotationMatrix2D 和 cv2.warpAffine 函数,可以实现图像的旋转、平移和缩放等操作。cv2.flip 是 OpenCV 库中的一个函数,用于翻转图像。

2024-11-01 17:32:36 1661

原创 Day22 opencv

全称Open Source Computer Vision Library,开源计算机视觉库,是一堆C和C++语言的源代码文件,这些源代码文件中实现了许多常用的计算机视觉算法。由英特尔公司主导并推进研发,,以BSD许可证授权发行,可以在商业和研究领域中免费使用,现在美国Willow Garage为OpenCV提供主要的支持广泛应用于工业和科研领域,用于实时图像处理、计算机视觉和模式识别程序的开发。

2024-10-31 18:43:40 748

原创 Day21包和模块

一个.py文件就是一个模块。模块是含有一系列数据、函数、类等的程序。包是将模块以文件夹的组织形式进行分组管理的方法,以便更好地组织和管理相关模块。包是一个包含一个特殊的__init__.py文件的目录。

2024-10-30 19:27:31 701

原创 Day20 数据结构

二叉树是由节点和边组成的树,每个节点最多有两个子节点。二叉树可以为空也就是没有结点若不为空,则它是由根结点和称为其左子树TL和右子树TR的两个不相交的二叉树组成。二叉树有五种形态注意c和d是不同的二叉树, 因为二叉树是有左右之分的。

2024-10-29 18:25:56 1355

原创 Day19 pandas文件读取和数据结构

创建一个新节点。如果链表为空,将新节点设置为头节点。否则,遍历链表直到最后一个节点,然后将新节点连接到最后一个节点的 `next`。

2024-10-28 19:46:15 1140

原创 Day18Pandas

Pandas 提供了多种统计学函数,用于对数据进行描述性统计分析。以下是一些常用的统计学函数及其描述:函数名称 描述说明`count()` 统计非空值的数量`sum()` 求和`mean()` 求均值`median()` 求中位数`std()` 求标准差`min()` 求最小值`max()` 求最大值`abs()` 求绝对值`prod()` 求所有数值的乘积案例:# 创建一个示例 DataFramedata = {# 计算每列的均值。

2024-10-25 19:24:49 1163

原创 Day17Pandas

Pandas 是一个开源的第三方 Python 库,用于数据分析。它提供了高性能、易于使用的数据结构和数据分析工具。它主要有以下功能提供了高性能、易于使用的数据结构和数据分析工具能够从 CSV、JSON、SQL、Microsoft Excel 等格式导入数据支持数据运算操作,如归并、再成形、选择、数据清洗和数据加工。

2024-10-24 20:12:22 918

原创 Day16 Matplotlib

Matplotlib 是一款用于数据可视化的 Python 软件包(也是Python绘图库),支持跨平台运行 它能够基于NumPy ndarray 数组绘制各种2D图像。其设计哲学是“像写字一样简单”,可以轻松地创建高质量图形。图形组成Matplotlib中图形组成:Figure:图形的顶层容器,相当于画布。Axes:图形的绘图区域,可以包含多个子图。Axis:坐标轴,包括X轴和Y轴,负责显示刻度和标签。Artist:图形中的所有元素,如线条、文本、标记等。

2024-10-23 20:05:34 1136

原创 Day15numpy

是NumPy中的一个迭代器对象,用于高效地遍历多维数组。它提供了多种选项和控制参数,如遍历顺序(order)、迭代标志(flags)和操作标志(op_flags)。

2024-10-22 19:23:48 1084

原创 day14numpy

NumPy(Numeric Python)是Python的第三方扩展包,主要用于计算和处理一维或多维数组。它在数组算术计算方面提供了大量数学函数,底层用C语言编写,能够高速执行数值计算。NumPy的数据结构非常适合数组和矩阵的运算。1.是Python科学计算的基础库。2.可对数组进行高效的数学运算。3.ndarray对象用于构建多维数组。4.能够执行傅立叶变换与重塑多维数组形状。5.提供了线性代数及随机数生成的内置函数。1.

2024-10-21 19:00:01 1080

原创 Day13python中的类和对象

创建对象的 ”模板”。是面向对象编程(OOP)中的一个基本概念,用于定义对象的蓝图或模板。不仅包含了数据成员(属性),还包含可以操作这些数据的函数(方法)。

2024-10-17 18:40:31 451

原创 Day12python函数

全局变量:定义在函数外部的变量,可以在整个模块中访问。函数是可重复执行的语句块,用于封装代码,提高重用性。局部变量:定义在函数内部的变量,只能在函数内部访问。函数调用:在内存中开辟栈帧,存储函数内部变量。函数定义:将函数代码存储到代码区,不执行。混合传参:位置传参在前,关键字传参在后。可以返回多个值,实际上返回一个元组。语句可选,用于结束函数并返回值。语句可选,用于结束函数并返回值。位置传参:按位置顺序传递参数。关键字传参:按参数名传递参数。定义:函数直接或间接调用自身。函数体以冒号开始,并缩进。

2024-10-16 20:20:21 778

原创 Day1python学习

Python中,深拷贝(deep copy)和浅拷贝(shallow copy)是处理对象复制时的两种不同方式,它们主要涉及到如何处理对象中的嵌套对象(如列表中的列表、字典中的字典等)。

2024-10-15 20:28:51 895

原创 Day11线代

设A是一个n×n的方阵,如果存在一个非零列向量v和一个标量λ,使得Av=λv成立,那么λ就称为矩阵A的特征值,v就称为对应于特征值λ的特征向量。向量的模向量的模是指向量的大小或长度,它是一个标量值。定义对于一个n维向量v=(v1,v2,...,vn),它的模定义为|v|=√(v1^2+v2^2+...+vn^2)。个值表示向量v从原点到终点的距离。向量的内积向量的内积是指两个向量之间的某种乘积运算,其结果是一个标量值。定义。

2024-10-14 18:48:13 1029

原创 Day10线代

克莱姆法则表明,如果线性方程组的系数矩阵的行列式不为0,则方程组有唯一解,且解可以通过将系数矩阵的第i列替换为常数项向量后得到的新矩阵的行列式除以系数矩阵的行列式来求得。给定一个nxn矩阵A,其第i行第j列的元素aij的代数余子式Cij是指去掉第i行和第j列后得到的(n-1)x(n-1)子矩阵的行列式,并乘以(-1)^(i+j)。:如果A是m×n矩阵,B是n×p矩阵,则它们的乘积C=AB是m×p矩阵,其中C的第i行第j列元素是A的第i行与B的第j列对应元素相乘后求和。

2024-10-12 18:42:26 1193

原创 Day9概率论

随机变量是一个从样本空间(所有可能结果的集合)到实数集的函数。样本空间中的每个结果都对应于随机变量的一个值。随机变量的值可以是离散的,也可以是连续的。随机变量通常用大写字母表示,如 X、Y 或 Z。离散多维随机变量:如果每个随机变量(Xi)只能取有限或可数个值,则称该随机变量为离散多维随机变量。连续多维随机变量:如果随机变量可以取任意实数值,则称为连续多维随机变量。

2024-10-11 21:20:21 1150

原创 Day8概率论

随机变量是一个从样本空间(所有可能结果的集合)到实数集的函数。样本空间中的每个结果都对应于随机变量的一个值。随机变量的值可以是离散的,也可以是连续的。随机变量通常用大写字母表示,如 X、Y 或 Z。

2024-10-10 20:04:13 1316

原创 高等数学Day7

学习率是一个超参数,它控制着每次更新参数时的步长大小。换句话说,学习率决定了梯度下降每次移动多远。1.直角三角形中的定义:正弦:在一个直角三角形中,某个锐角的正弦值等于该角对面的边长与斜边长度的比值。余弦:该角的余弦值等于该角邻边的边长与斜边长度的比值。正切:该角的正切值等于该角对面边长与邻边的比值。2.单位圆中的定义:在单位圆中(半径为1的圆),任意一个角度对应一个点,该点的横坐标表示余弦值,纵坐标表示正弦值。正切则可以看作是正弦与余弦的比值。

2024-10-09 20:17:05 1476

原创 高等数学Day6

函数f是从一个集合D(称为定义域,D包含于实数集R)到另一个集合Y(称为值域)的映射。对于定义域中的每一个元素x,函数f都指定了一个唯一的元素y在值域中,记作:y=f(x),x∈X其中x叫做自变量,y叫做因变量,f叫做映射规则,f(x)表示一个函数值。函数的两要素是指函数的定义域和值域。定义域是函数中所有可能的输入值的集合。换句话说,定义域是使得函数有意义的所有xx值的集合。值域是函数中所有可能的输出值的集合。换句话说,值域是函数f(x)fx)在定义域内所有可能的yy值的集合。

2024-10-08 20:19:25 1510

原创 Python基础学习Day5

s.update( x ) 添加元素到集合,且参数可以是列表,元组,字典等 ,x 可以有多个,用逗号分开。s.discard( x ):将元素 x 从集合 s 中移除,如果元素不存在,不会发生错误。字典值可以是任何的 python 对象,既可以是标准的对象,也可以是用户定义的,但键不行。s.remove( x ):将元素 x 从集合 s 中移除,如果元素不存在,则会发生错误。相应的键放入到方括号中,如果用字典里没有的键访问数据,会输出错误。将元素 x 添加到集合 s 中,如果元素已存在,则不进行任何操作。

2024-10-05 11:45:42 1231

原创 Python基础学习day5

9.list.sort( key=None, reverse=False)对原列表进行排序: x.sort(key=lambda a:abs(a-3), reverse=False)2.[x1,x2,x3]+[y1,y2,y3,y4]:输出结果[x1,x2,x3,y1,y2,y3,y4]3.list.extend(seq)在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)3.x[*,*,*]*3:输出结果x[*,*,*,*,*,*,*,*,*]

2024-09-29 20:28:09 330

原创 python基础学习day4

x='string't="string"z='''string'''使用反斜杠\对字符进行转义,如\r 回车 \n 换行 \t 缩进 \\ 表示 \字符串前加r表示原始字符串,直接输出,不转意字符串连接:"+"或相邻的两个或以上字符串字符值(引号标注的字符)回去自动合并字符串多次重复可以把字符串看作数组,通过下标访问数组(支持负数)支持通过下标截取子字符串,第一个参数省略表示0,第二个参数省略表示截取到最后字面量格式化字符串,是新的格式化字符串的语法。之前我们习惯用百分号 (%):f-string 格式化字

2024-09-27 20:20:07 1017

原创 Python学习day3

<(左位移):表达式x << b中 , 对于操作数x的二进制数向左移动b位,丢弃左边超出最高位移边界的部分,将右边空出的部分补齐。^(按位异或):表达式 x & y中, 对于x, y每一位上对应值不同,则结果中该位的值也为1,否则为0。给出 n 值,则代表舍入到小数点后的位数。|(按位或):表达式 x & y中, 对于x, y每一位上对应值只要有一个为1,则结果中该位的值也为1,否则为0。&(按位与):如果有一表达式 x & y, 对于x, y每一位上对应的值都为1,结果中该位的值也为1,否则为0。

2024-09-26 20:05:42 954

原创 python基础学习day2

python数字类型转换:1.int(x) (其他进制数字转化时用int(x,n),n为进制数) 2.float(x) 3.bin(x)(转化为二进制) 4.oct(x)(转化为八进制) 5.hex(x)(转化为十六进制) 6.complex(x)(转化为实部x, 虚部为0的复数) 7.complex(x,y)(转化为实部x,虚部yi的复数) 8.bool(x)(转化为布尔值)。not和or的用法类似于and。python运算符:+, -, *, /, **(幂运算), //(整除),%((取模)。

2024-09-25 20:11:16 327

原创 Windows框架下anaconda和pycharm的安装配置

首先,确保C盘主文件夹My Documents及子目录不为中文,会导致后续环境搭建等操作出问题。修改目录名称得搜索网络教程。

2024-09-24 19:49:48 515

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除