探索Python单元测试的利器

2024软件测试面试刷题,这个小程序(永久刷题),靠它快速找到工作了!(刷题APP的天花板)_软件测试刷题小程序-CSDN博客文章浏览阅读3.4k次,点赞86次,收藏15次。你知不知道有这么一个软件测试面试的刷题小程序。里面包含了面试常问的软件测试基础题,web自动化测试、app自动化测试、接口测试、性能测试、自动化测试、安全测试及一些常问到的人力资源题目。最主要的是他还收集了像阿里、华为这样的大厂面试真题,还有互动交流板块……_软件测试刷题小程序​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502​编辑https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502icon-default.png?t=N7T8https://blog.csdn.net/AI_Green/article/details/134931243?spm=1001.2014.3001.5502

在软件开发中,单元测试是保障代码质量的关键环节。pytest作为python的一个强大的测试框架,以其简洁、灵活和强大的插件系统而广受开发者喜爱。这里我们会结合示例深入了解pytest的多种使用方式。

pytest的基本使用

首先,我们通过一个简单的例子来展示pytest的基本用法。假设我们有一个calculator.py文件,包含一个简单的计算器类:

# calculator.py
class Calculator:
def add(self, a, b):
return a + b

def subtract(self, a, b):
return a - b

接下来,我们创建一个test_calculator.py文件,编写对应的测试用例:

# test_calculator.py
import pytest
from calculator import Calculator

def test_add():
    calc = Calculator()
assert calc.add(4, 7) == 11

def test_subtract():
    calc = Calculator()
assert calc.subtract(10, 5) == 5

在命令行中运行pytest,它将自动发现并执行所有以test_开头的函数。

图片

参数化测试

pytest支持参数化测试,允许你为测试函数传递不同的参数,从而验证函数对不同输入的处理。

def test_add_parameters(a, b, expected):
    calc = Calculator()
assert calc.add(a, b) == expected

@pytest.mark.parametrize("a, b, expected", [
    (1, 2, 3),
    (0, 2, 2),
    (-1, -1, -2)
])
def test_add(test_add_parameters):
pass

fixtures

pytest的fixtures允许你在测试之前和之后执行一些设置和清理工作。例如,你可以为每个测试创建和清理一个数据库连接。

import pytest

@pytest.fixture
def db_connection():
    connection = create_database_connection()
yield connection
    connection.close()

def test_database_insert(db_connection):
    data = {'name': 'Alice'}
    db_connection.insert(data)
assert db_connection.find_one(data) == data

def test_database_update(db_connection):
    data = {'name': 'Bob'}
    db_connection.insert(data)
    db_connection.update(data, {'name': 'Alice'})
assert db_connection.find_one({'name': 'Alice'})

​​​​​​​在这个例子中,db_connection是一个fixture,它在每个测试之前创建,在测试之后关闭。

图片

更详细的测试失败信息

pytest增强了断言失败时的信息输出,使得开发者能够快速定位问题。

def test_failing_test():
    list1 = [1, 2, 3]
    list2 = [1, 2, 2]
assert list1 == list2  # 这个断言会失败
运行这个测试,pytest会提供两个列表的差异详细信息。

使用插件

pytest拥有丰富的插件生态系统,可以帮助你扩展pytest的功能。例如,pytest-cov插件可以生成测试覆盖率报告。

首先,安装插件: 

pip install pytest-cov

然后,在命令行中使用以下命令来生成覆盖率报告:​​​​​​​

pytest --cov=calculator --cov-report term-missing

总之,pytest是一个功能全面、使用方便的测试框架,它通过参数化测试、fixtures、断言增强、插件系统等特性,极大地提升了Python单元测试的效率和体验。无论你是测试新手还是资深开发者,pytest都是进行单元测试的得力助手。

行动吧,在路上总比一直观望的要好,未来的你肯定会感谢现在拼搏的自己!如果想学习提升找不到资料,没人答疑解惑时,请及时加入群: 759968159,里面有各种测试开发资料和技术可以一起交流哦。

最后: 下方这份完整的软件测试视频教程已经整理上传完成,需要的朋友们可以自行领取【保证100%免费】

​​​软件测试面试文档

我们学习必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有字节大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值