AMD硬件环境搭建SSD目标检测平台:Win10+VSCode+Tensorflow2.2-CPU版

本文介绍了在AMD硬件(CPU: Ryzen 7 4800H, GPU: Radeon Graphics)上,使用Anaconda3-2019.10搭建Tensorflow2.2.0的SSD目标检测平台的过程,包括Anaconda的安装、Tensorflow环境搭建和VSCode配置。尽管AMD硬件在深度学习支持上不如Nvidia,作者还是成功克服了各种版本兼容问题,实现了CPU版Tensorflow的运行。" 42492929,1098138,Android手势识别实现图片移动,"['Android开发', '移动开发', 'UI交互', '图形绘制']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AMD硬件环境搭建SSD目标检测平台:Win10+VSCode+Tensorflow2.2-CPU版


环境

CPU:AMD Ryzen 7 4800H
GPU:AMD Radeon™ Graphics
Anaconda3-2019.10-Windows-x86_64.exe
Tensorflow 2.2.0

SSD源码

源码链接:https://github.com/bubbliiiing/ssd-tf2
文章:睿智的目标检测37——TF2搭建SSD目标检测平台(tensorflow2)

前言

在没有真正了解深度学习的硬件需求情况下,深度学习小白后知后觉的购置了AMD硬件配置电脑(机械革命Code01),无奈要进行毕设研究,只能将就着各种找文章寻资源,硬着头皮解决遇到的各路问题。
首先不得不说目前A卡深度学习的生态跟N卡确实没得比,常规的一些AMD硬件型号支持tensorflow,但还未完备支持pytorch,即使支持了也是在特定GPU、CPU搭载ROCm环境的Linux系统下才能有一定性能,只能说对深度学习小白是真不友好。
再者,在搭建各种环境的时候,深知自己搭配环境版本的艰苦,所以严格按照找到的文章环境配置,结果。。。什么pip不再支持python3.5啊、Anaco

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值