智能车图像处理 (五)图像处理想法

本文探讨了一种创新的赛道元素处理方法,通过拆分传统巡线过程,利用左右边界独立跟踪,实现更精确的中线计算。特别适用于复杂场景如三岔、圆环,有助于优化路径规划和减少比赛时间。作者还提及可能结合八邻域算法和逆透视处理以增强效果,如车辆入库出库操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

晚上闲来无事,便仔细阅读了上交大的开源代码讲解,在其中一篇文章中得到了一个很好的元素处理方法,思来想去觉得算法可行性应该可以,便记录下来。

在开源讲解的第四篇中,他们提出了单独左(右)边线进行跟踪从而得出中线的方式。觉得该方法可以使用在一些特殊的元素中。下面给出我自己的一些想法,思路或许不完整,如有错误,希望各位能够指出。

我们对赛道进行普通的巡线时,先是往左扫线,得出左边赛道的边界,后对右边界扫线,得出有边界,通常这两步我们都封装在一个函数中,并紧接其后对它得出赛道的中线和宽度。

基于文章提出的思想,我们可以将这一步拆解成三个函数:左边界扫线,右边界扫线,得出赛道中线及宽度。

我们把车放在长直道中,记录车身在直道上的赛道宽度并记录下来。以此赛道宽度为例,我们通过扫到的左边界加上直道赛道宽度的一半,其实也就是我们中线所在的位置。同理,右边界也是同样的道理。

以此我们提出基于双边线的中线方式,处理一些特殊的元素,以16届的三岔为例,当我们判断出三岔时,切换至左边界得中线方式,三岔左边界相对于直道而言,一定是往左偏的,那么此时得到的中线偏差也一定是左偏,舵机或车轮也就会往左打脚。同理,出三岔时也一样,出三岔后关闭左边界得中线,转换为普通巡线得中线。

在圆环部分,以左圆环为例,首先我们可以判断左拐点得到车身即将进入圆环,此时切换为右边界得中线,再车身进入圆环中间,此时摄像头采集的靠近车体的部分几行不会出现丢线的情况,至标志位,此时切换为左边界得中线,车便可向左打脚进入圆环。出环时也一样,通过切换左右边界得出中线来完成遇到特殊元素时的路径规划。

用此想法,或许在后续路径优化上,可以缩短过弯过环的路线以减少比赛时间。

该方式如果采用八邻域的边线跟踪算法,或许能够有更好的效果,出库入库时,便可根据一边扫到的边界来实现。通过双边得中线的方法前,可以对图像进行逆透视处理以边更好的处理元素。本想法仅是我晚上一时兴起时想到,或许有不足,希望有大佬指正

### 智能车逆透视变换进入圆环区域的技术实现 为了使智能车能够顺利通过复杂环境中的圆环区域,逆透视变换(Inverse Perspective Mapping, IPM)成为了一种重要的图像处理手段。IPM 可以将摄像机拍摄到的二维图像转换成自上而下的俯视图视角,从而更方便地检测车道线和其他障碍物。 #### 1. 图像预处理 在应用逆透视变换之前,通常需要对原始图像进行一定的预处理操作。这包括但不限于灰度化、高斯滤波以及边缘检测等步骤。这些预处理措施有助于减少噪声干扰并突出重要特征[^3]。 ```python import cv2 import numpy as np def preprocess_image(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) edges = cv2.Canny(blurred, 50, 150) return edges ``` #### 2. 定义映射矩阵 接下来定义从原图坐标系到目标俯视图坐标系之间的仿射变换或单应性矩阵。对于特定的比赛场地布局,可以通过手动标注四个角点来构建此矩阵;也可以采用自动匹配的方式寻找场景中的已知几何结构来进行校准。 ```python src_points = np.float32([[x1,y1], [x2,y2], [x3,y3], [x4,y4]]) # 原始图像上的四点位置 dst_points = np.float32([[a,b], [c,d], [e,f], [g,h]]) # 目标俯视图对应的四点位置 homography_matrix = cv2.getPerspectiveTransform(src_points, dst_points) ``` #### 3. 应用逆透视变换 利用上述得到的变换矩阵对输入帧执行 `warpPerspective` 函数完成实际的空间变换过程。此时输出即为所期望获得的鸟瞰视角下赛道状况表示形式。 ```python ipm_result = cv2.warpPerspective(edges, homography_matrix, (width,height)) ``` #### 4. 特征提取与路径规划 最后一步是在新的视觉表象基础上进一步实施必要的分析工作,例如定位车辆当前位置相对于理想行驶轨迹偏差量,并据此调整转向角度确保平稳穿过圆形弯道部分[^1]。 ```python # 计算加权平均值作为参考方向 weighted_avg_x = sum(x * w for x,w in zip(row_positions, weights)) / total_weight error_angle = math.atan((center_line - weighted_avg_x)/focal_length) # 调节舵机指令使得误差趋近零 steering_command = pid_controller.update(error_angle) send_to_car(steering_command) ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值