题目 | 作者 | 组织 | 关键词 |
---|---|---|---|
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks | Jun-Yan Zhu, Taesung Park, Phillip Isola Alexei A. Efro | Berkeley AI Research (BAIR) laboratory, UC Berkeley |
一、摘要
- 提出一种无需任何成对的训练示例实现 image transportation 问题的方法
- 新的损失函数:采用一种对抗损失,使得图像难以与原始图像区分
二、Cycle-GAN
- 两组映射关系
- G:X->Y
- F:Y->X
- 两个鉴别器
- Dxy:判别G(x)生成的y
- Dyx:判别F(y)生成的x
三、对抗损失Adversarial Loss
- 对两组D和G进行优化
四、cycle-GAN的损失函数
- 希望两组G和D的结果不是“对抗的”
- 即F(G(x))与等于x,G(F(y))约等于y
- ”循环一致性损失“保证这种属性
- 得到最终的损失函数