【论文阅读笔记】Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

该文提出Cycle-ConsistentAdversarialNetworks(Cycle-GAN)方法,解决了无需成对训练样本的图像转换问题。通过使用对抗损失和循环一致性损失,确保从X到Y的转换后,再从Y回到X的图像能恢复原貌,实现了有效的无配对图像翻译。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目作者组织关键词
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial NetworksJun-Yan Zhu, Taesung Park, Phillip Isola Alexei A. EfroBerkeley AI Research (BAIR) laboratory, UC Berkeley

一、摘要

  • 提出一种无需任何成对的训练示例实现 image transportation 问题的方法
  • 新的损失函数:采用一种对抗损失,使得图像难以与原始图像区分

二、Cycle-GAN

  • 两组映射关系
    • G:X->Y
    • F:Y->X
  • 两个鉴别器
    • Dxy:判别G(x)生成的y
    • Dyx:判别F(y)生成的x

三、对抗损失Adversarial Loss

  • 对两组D和G进行优化
    在这里插入图片描述
    在这里插入图片描述

四、cycle-GAN的损失函数

  • 希望两组G和D的结果不是“对抗的”
    • 即F(G(x))与等于x,G(F(y))约等于y
  • ”循环一致性损失“保证这种属性
    在这里插入图片描述
  • 得到最终的损失函数
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值